Lys STAP]

MAKE SYSTEM

USER MANUAL

1 Change History

Date Version | Reason and Change
11/01/01 1.0.0 Initial release
10/07/01 1.0.1 Updated to reflect changes made to the make system.

12/07/01 1.0.2 Added description of MKFLAGS

17/07/01 1.0.3 Added description of DVD_LI NK_I NI T

28/09/01 1.04 Added DVD_GCS info.

31/10/01 1.0.5 Added support for UNI FI ED_MEMORY build and
SPECI AL_CONFI G_FI LE

09/05/02 1.0.6 Added support for generating a map file and sup-
pressing the clean_all target.

09/09/02 1.0.7 Added support for SPARC build.

05/12/02 1.0.8 Added DVD_BUILD_VARIANT,
OPTIONAL_CONFIG_FILE and OPTLEVEL informa-
tion.

02/05/03 1.0.9 Added 0S21 support information and update to the
template for review.

12/05/03 1.0.10 Updates after review. Removed 0S40 support.

29/08/03 1.0.11 Added mb390 to DVD_PLATFORM

09/10/03 1.0.12 Fixed OS21 support and added stpti4 to
DVD_TRANSPORT options

15/06/04 1.0.13 | Support mb391 and USE_DEBUG_KERNEL

29/06/04 1.0.14 Added PRESERVE_FILES flag

07/10/04 1.0.15 Support mb400.

09/02/05 1.016 Support Walkiry and mb411 boards.

29/03/05 1.0.17 Support mb390.

174 Page 1 of 66 MAKE SYSTEM - 1
25 August 2009 Version 1.0.31

STAPI

Date Version | Reason and Change

17/11/2005 | 1.0.18 Support mb421, mb426, maly3s, mb395. Added
demux to DVD_TRANSPORT. Added pc-cygwin to
DVD_HOST. Updated examples for ST200.

20/01/2006 | 1.0.19 Support for mb428 (5525) & mbh457 (5188).

18/04/2006 | 1.0.20 | Support for mb436 (5107).

21/04/2006 | 1.0.21 Support for DTT5107 Refboard.

07/09/2006 | 1.0.22 Support for CAB5107 and SAT5107 Refboard.

22/02/2006 | 1.0.23 | Support for mb519 (7200).

08/10/2007 | 1.0.24 Support for mb634 (5162).

13/02/2008 | 1.0.25 Support for mb618 (7111). Enabling 32 bit addressing
support for ST40 devices. Overriding the default
-mboard link option (0S21-ST40).

16/04/2008 | 1.0.26 Three environment options added:
STAPI REF_COWPAT,

STAPI REF_| NCLUDE_COWPAT,
STPONER_SUPPORTED

17/06/2008 | 1.0.27 Support for mb680 (7105) and mb628(7141).

Added environment option DVD_BUI LD_ONLY_CORE
to build only core module (and no ioctl) code under
Linux.

23/06/2008 | 1.0.28 Added DVD_CPU environment variable to support
multicore builds. eg: for STx7141.

08/07/2008 | 1.0.29 | Support for mb671 (7200 cut2).

17/10/2008 | 1.0.30 Support for mb704 (5197).

25/08/2009 | 1.0.31 Added templates for LINUX supporting makefiles

MAKE SYSTEM - 2 IS72
Version 1.0.31 25 August 2009

STAPI

2

b7

Introduction

The STAPI make system provides the infrastructure for building the STAPI component libraries, their
associated test suites and any sample applications. Its primary objective is therefore to build libraries
and executables in both the development and installation environments. This document describes how
to use the make system to build the appropriate libraries and how to add new libraries in the
development environment.

This document describes version 2 of the STAPI make system. Version 1, is only considered in terms
of its compatibility impact. Version 2 introduced many new features, such as object directories and
provision for overriding many of the make settings. These changes were largely incompatible with the
version 1, so a version 2 was introduced and the MAKE_VERSI ONvariable used to distinguish between
them.

Structure

Each STAPI component is designed such that it can be built in isolation or as part of a larger software
component. The source tree structure has two variants, namely a development and installed tree.

The development tree, used internally within ST, is based within a number of clearcase VOBs
(Versioned Object Bases). The root of this tree is typically / dvd- vob and each component has a its
own VOB. For example, the following are some of the VOBs: dvdca- prj - st evt,

dvdgr - prj - stdenc and dvdbr - prj - st pti . The structure of each VOB varies, but typically has
src, docs and t est s sub-directories. There are also specialized VOBs which hold general system
header files, system configuration files and the make system files. The structure looks something like
this:

dvd-vob

dvdgr-prj-staud dvdbr-prj-board dvdbr-prj-make

src docs tests project

Figure 1: A Development Tree

An installed tree has a very similar structure. The dvd-vob directory is replaced by a sr ¢ directory and
that is placed at the same level as an i ncl ude, docs, | i b and conf i g directory. The component
directories are renamed from the “dvdXX- prj - COVPONENT” format to “COMPONENT”. Otherwise the
component directories are much the same. The header files which are exported from various
components are centralized in the top level include directory and static libraries are exported to the lib
directory. The structure looks something like this:

MAKE SYSTEM - 3

25 August 2009 Version 1.0.31

STAPI

tree root (e.g. dbref)

docs include src lib make config

staud . stvid . stevt

I I I I
src docs tests projects

Figure 2 : An Installed Tree

It is worth noting that, relative to makesystem version 1, the general system header files have all
moved to the i ncl ude directory, the build configuration files have moved to the conf i g directory and
the make system files to the make directory (each set of files having been moved from specialized
component VOBS).

Make System Basics

The make system was designed to allow a developer to set up some basic configuration options in the
environment, making it possible to subsequently change directory into one of the STAPI component
directories or its associated test directory and type “make”. The make system should then build
whatever is appropriate in that directory. So, in the component directory, the make system will build the
component library (e.g. st denc. | i b when building for an ST20 target in the STDENC component
directory). In a component test directory, it should build one or more executables which could be
downloaded and tested on a target platform.

To achieve either goal, the make system invariably needs to build the component plus any
components on which it depends. Each component therefore defines a list of components that it
requires (henceforth known as imports). Building the component therefore involves compiling all the
parts in the component directory, followed by compiling all the parts in the imported components’
directories.

Structure of a Simple ST20 Makefile

Figure 3 lists the source for one of the simplest makefiles.

MAKE SYSTEM - 4 IS72

Version 1.0.31 25 August 2009

STAPI

|DVD MAKE_VERSION : = 2
i fdef | N OBJECT DIR

*

> i ncl ude $(DVD_MAKE) / generi c. mak

Other conponents this conponent is dependant upon
1 | MPORTS : = stpio

2 EXPORTS := sti2c.h sti2c.lib

3 TARGETS := sti2c.lib

| ocal objects which conprise this conmponent
4 OBJS : = sti2c.tco

> i ncl ude $(DVD_MAKE)/ defrul es. mak

5 sti2c.lib: $(0BJIS)
$(BUI LD_LI BRARY)

6 cl ean:

@cho C eaning sti2c
-$(RM $(0BJS)
-$(RVM $(TARGETS)

Local dependencies
7 sti2c.tco: sti2c.h

el se

i ncl ude $(DVD_MAKE)/ bui | ddi r. mak

E I . B T

endi f

Figure 3 : A Simple ST20 Makefile
This makefile will build sti 2c. | i b for the ST20. The lines in the makefile can be separated into 4

categories:

1 The line marked with “#” indicates that this makefile is a new version makefile. This line will be
ignored in further discussion, but all new makefiles and makefile updates must include this line.

2 Lines marked with “*” add object directory support to a makefile (see Section 5.3.)
Lines marked with “>” import the major portion of the make system files.

4 All other lines (numbered 1 to 7, above) provide the information pertinent to the building of the
STi2C component.

All makefiles must have this basic structure and parts that fall into category 4 should be tailored for a
particular component. The makefile can be generalized to the following format:

IS72 MAKE SYSTEM - 5

25 August 2009 Version 1.0.31

STAPI

DVD_MAKE_VERSI ON : = 2
i fdef | N_OBJECT DIR

i ncl ude $(DVD_MAKE) / generi c. mak

Define the conponent-specific variables

i ncl ude $(DVD_MAKE)/ def r ul es. nak

List the rules to build conmponent-specific targets
el se

i ncl ude $(DVD_MAKE)/ bui | ddi r. mak

endi f

Figure 4 : The Basic Makefile Structure

5.1 Component Variables
The initial set of variables required for a simple component makefile are:
1 1 MPORTS
2 EXPORTS
3 TARGETS
The sample makefile introduced another variable (OBJS), but that is used internally by the makefile
and not by the make system. It is, however, suggested that this model be followed because it makes
for a readable makefile.

5.1.1 IMPORTS
This defines a list of STAPI components that are used by this component. So the STI2C component
uses STPIO (line 1 of Figure 3).

5.1.2 EXPORTS
This defines a list of files which are exported by this component. Typically, a component will export a
header file (which defines its interface) and a library. So in the example, STI2C exports st i 2c. h and
sti 2c.li b (onan ST20 target). See line 2 of Figure 3.

5.1.3 TARGETS
This defines a list of files to be built for the component. This should minimally include any libraries
listed in the EXPORT list, but may include any number of targets. In the example, sti 2c. | i b is to be
built (see line 3 of Figure 3).

5.2 Component Rules
The component rules define the process used to build the exported libraries and any intermediary
files. The example makefile defines the three targets which are required for the STI2C component:

MAKE SYSTEM - 6 1574

Version 1.0.31 25 August 2009

STAPI

521

5.2.2

5.2.3

5.3

5.4

5.5

b7

1 The export target rules.
2 A‘“clean” target rule.

3 Header dependency rules.

Export Target Rules

The makefile must supply a rule for each of the targets listed in the TARGETS variable. In the example,
the makefile supplied a rule to build sti 2c. | i b (see the line 5 of Figure 3). This rule defines that
building sti 2c. | i breliesonsti 2c. t co, and the BU LD LI BRARY macro must be used to produce
the library from the list of objects.

“clean” Target Rule

All makefiles must provide a “clean” target that defines how to remove any intermediary files. The
sample makefile lists this target on line 6 of Figure 3. Typically, it defines a list of commands to delete
the recognized intermediary files. These commands must be defines in terms of the RMmacro
because the makefile must work on both PC- and Unix-based systems.

Header Dependency Rules

This is an optional part of the component rules. This section usually defines which header files a
particular object file depends on. To reduce the maintenance overhead, this is usually limited to a
subset of STAPI header files (possibly only the ones that occur in the component directory), as can be
seen in line 7 of Figure 3.

Object Directory Support

Lines marked with “*” in Figure 3 form part of the object directory support. This make system feature
results in the creation of an object directory for a particular architecture, into which all intermediary
files and libraries are stored. For an ST20 build, the object files will therefore be located in obj s/
ST20. All makefiles should be updated to include this support, because it allows components to be
built for different architectures without cleaning the build tree. From release 2.7.0, you can override the
default name of the object directory by setting the required name in DVD_BUILD VARIANT.

Make System Support

The two lines marked with “>” in Figure 3 include the major part of the make system into a makefile.
These files set up a number of variables and targets which allows the same make file to support
various make system features from the same, simple makefile. It should be emphasized that the order
of the makefile parts shown in Figure 3 and Figure 4 is important; failure to use this order can result in
unexpected behavior.

Using the Makefile
Given the makefile in Figure 3, we need to know how to use it. The basic goal is to':

1 Set some configuration options in the environment.

2 Invoke “make” with a target that we wish to build.

1. This assumes that the appropriate GNU make and compiler are installed on the build host.
It is beyond the scope of this document to deal with the installation of these tools.

MAKE SYSTEM - 7

25 August 2009 Version 1.0.31

STAPI

5.5.1

5.5.2

Setting Configuration Environment

The configuration environment is used to locate the make system files and components in within the
directory structure of the build host. Minimally, the following three environment variables should be set:

1 DVD_ROOT

This should provide the location of the root of the STAPI components. In a development
environment this would typically be / dvd- vob. In an installation environment it would be
something like /i nst al | _pat h/ sr c for a Solaris installation and c: \ i nstal | _pat h\ src fora
DOS installation.

2 DVD_MAKE

This should provide the location of the STAPI make system files. In a development environment
this would typically be / dvd- vob/ dvdbr - prj - make. In an installation environment it would be
something like / i nst al | _pat h/ make for a Solaris installation and c: \i nst al | _pat h\ make
for a DOS installation.

3 DVD_I NCLUDE

This provides the location of the central STAPI include directory. It is not necessary to set this in a
development environment because the make system will use the header files from their location
within the component directories (a process called in-place includes). In an installation
environment, this would be set to something like /i nst al | _pat h/ i ncl ude for a Solaris
installation and c: \'i nstal | _pat h\i ncl ude for a DOS installation.

There are a number of other configuration entries that can be set in the environment, but they will be
described later.

Invoke “make”

This is the stage where the build process is invoked. To perform the default build, the command “make”
is invoked (the actual command may be “gmake”, depending how the GNU make has been installed;
for brevity we will just refer to the command as “make” in this document). This will build the

sti 2c. |i bfile. It is possible to invoke “make” differently to build the following targets:

* make sti2c.tco
* nmake cl ean

Note that it will be necessary to set up extra files like at ar get s. cf g file for the building and running
of executables to succeed. It is beyond the scope of this document to deal with this part of the build
process.

Doing More

The example in Section 5 is the simplest of makefiles. This section explains how to add to this basic
makefile to deal with more complex requirements. Each sub-section deals with a particular goal. All
sections deal specifically with ST20 makefiles, until multi-architecture makefiles are introduced in
Section 6.13.

6.1 Building Imported Library Components
The STI2C makefile will only build the sti 2c. | i b and not the import libraries. There are two ways to
get the make system to build the import libraries:

MAKE SYSTEM - 8 172

Version 1.0.31 25 August 2009

STAPI

Note

6.2

6.2.1

b7

1 Invoke the build with a call “make DVD_DEPENDS=al | .

This builds all imported libraries and for each of these libraries, all of their imported libraries are
recursively built too, ... until all libraries are built. This ensures that all libraries required by a
particular component are available. This is only useful within the development environment. See
Section 7.16 for information about DVD_DEPENDS.

2 Change line 5 in Figure 3 to be:
sti2c.lib: $(0BIS) $(I MPORT_LI BS)

This instructs the make system to build the imported libraries before creating the sti 2c. | i b. This
should generally be avoided for libraries, because the side-effect of this line is that the imported
libraries will be added to sti 2c. | i b.

The $(1 MPORT_LI BS) is usually added as a dependency when building an executable, e.g. for a
test harness. The following makefile stub provides such an example:

I MPORTS

= sttbx stuart stpio
TARCETS : = nyprog. | ku
OBJS := one.tco two.tco three.tco

myprog_INIT : = entry_point
i ncl ude $(DVD_MAKE)/ def rul es. mak

nyprog. | ku: $(0BJS) $(! MPORT_LI BS)
$(LI NK_EXECUTABLE)

cl ean:
@cho Cl eani ng nyprog
-$(RVM $(0BIS)

-$(RM $(TARGETS)

Figure 5: Sample Makefile to Build An Executable

The line defining mypr og_I NI T is required by the LI NK_EXECUTABLE macro to set the entry point to
nypr og. | ku. See Section 10 for information about make system macros.
Adding Compile Flags

A common requirement is to update the compile flags in a makefile. It is possible to adjust the flags
globally or for a single compile target.

Global Change

By adjusting the global CFLAGS variable, the makefile is able to change the build parameters for all
objects compiled by that makefile. So, given the makefile in Figure 5, we could add the following line
after the TARGETS line:

CFLAGS : = $(CFLAGS) - DMY_DEFI NE=1

Note the following important points regarding this additional line:

MAKE SYSTEM - 9

25 August 2009 Version 1.0.31

STAPI

* The use of the “: =" assignment operator is important because it allows subsequent lines in the
makefile to update the CFLAGS in the same manner. The “+=" assignment operator may also be
used, but the “=" operator must not be used.

* A further important point is the location of the line within the makefile. The basic CFLAGS
assignment occurs when the makefile imports the generi c. mak file. Any subsequent
adjustments of the CFLAGS can work on that basis.

¢ Include paths must not be added to the CFLAGS (see Section 6.3 for a description on how to do
this).

6.2.2 Single Target Change
It is possible to define a new variable to set a compile flag for a single target. In Figure 5, if we wished
to define “EXTRA_DEFI NE=1" when building one. t co, all you need to do is add the following line
before including def r ul es. nmak:

one_CFLAGS : = - DEXTRA _DEFI NE=1

It is important not to add include paths using this variable, since another mechanism is provided for
this purpose (see Section 6.3).

6.3 Adding to the Include Path

6.3.1 Global Addition
A common requirement is to add extra directories to the include path to locate required headers. The
correct way to do that is to assign a value to the | NCLUDE_PATH variable before including
def r ul es. mak. As an example, the video driver splits its files over a few directories (currently: api ,
avsync, buf f er s, decode, di gi nput, di spl ay and t ri cknod). If compilation of a file required
header files located in each of these directories, the following lines would achieve that:
MY_SUBDI RS : = api avsync buffers decode digi nput display tricknod
| NCLUDE_PATH += $(addprefix $(DvVD_BU LD DIR)/, $(MY_SUBDI RS))
The result of the two lines would be to append a fully qualified path for each sub-directory to the
include path. The path must be fully qualified for object directory builds. This is achieved by
prepending “$(DVD_BUI LD_DI R) / " to each of the sub-directories. DVD_BUI LD_DI Ris set by the
make system to be the location of the build directory.
See Section 6.9.2 for information about sub-libraries.

6.3.2 Automatic Include Path
To understand when to add items to the include path, this section describes what the include path is
initially set to.
When DVD_| NCLUDE is set to indicate an include directory (with all generic, platform,
architecture-dependent and STAPI header files), the path will include the following directories (in the
indicated order):
1 Component build directory.
2 The include directory indicated by DVD | NCLUDE.
3 The full path to components listed in the makefile variable HEADER | MPORTS.
4 The optional directory indicated by DVD_| NCLUDE_EXPORTS.

MAKE SYSTEM - 10 172

Version 1.0.31 25 August 2009

STAPI

6.4

6.4.1

6.4.2

6.5

b7

5 Chip, board and platform directories.

When the DVD_| NCLUDE is not set, the make system will use a process of in-place includes. As such
the include path is much longer and includes the following:

1 Component build directory.
2 The full path to components listed in the makefile variable HEADER | MPORTS.

3 The full path to components listed in the makefile variables | MPORTS or ST20_I| MPORTS for ST20
targets or ST40_| MPORTS for ST40 targets.

4 The full path to the special include, chip, board and platform components which only store general
header files (not STAPI header files).

Adding Link Flags

Global Additions

When linking an executable it is possible that a makefile may wish to add extra flags to the link
command. Given the example in Figure 5 on page 9, it is possible to get the link process to produce a
map file by adding the following line after the “TARGETS” line:

LKFLAGS = -M $(basenane $@ . map
A few important notes about this line:

* The makefile only works for the ST20 architecture, so the flags are therefore specific to the ST20
tools.

* The use of the “=" is important because it defers the evaluation of the “$@ until nypr og. | ku is
linked (“$@ will become nypr og. | ku).

* The function basenanme strips the extension from nmypr og. | ku to give mypr og. This allows the
makefile to produce a sensible map file called mypr og. map.

Single Target Addition

The flags added in Section 6.4.1 will be applied to all targets linked in a single makefile (so if one. | ku
and t wo. | ku are linked, both will have the additional link flags). It is possible to apply the flags to a
single target by defining a line like this:

one_LKFLAGS : = -M one. nap

Given this line in a makefile which builds both one. | ku and t wo. | ku, the additional flag will only be
applied when building one. | ku. Either “:=" or “=" may be used in this assignment.

Adding to the Library Path

When alibrary is created or an executable is linked, the build tools will search a path to find the objects
and libraries which go into the build. A makefile may therefore wish to extend the path to include
directories in which extra libraries are located. For example:

LI NK_PATH += $(DVD_BUI LD DI R)/ extra_dir/ obj s/ $(OBJECT DI RECTORY)

Points to note about this addition:

* The path is a space separated list of directories to search.

MAKE SYSTEM - 11

25 August 2009 Version 1.0.31

STAPI

It is important to know where the object files are stored for any items added to the path; i.e. if a
directory supports object directories, the path must refer to the appropriate object directory. The
sample line assumes that the makefile in extra_dir supports object directories and appends *“/
obj s/ $(OBJECT_DI RECTORY) " to the directory name.

It is unnecessary to add paths to imported libraries (those that appear in the | MPORTS list) or
sub-libraries (those that appear in SUBDI RS list - see Section 6.9.2). These are automatically
added by the make system, as necessary.

This instruction only adds a location in which libraries are to be found. Adding a library requires the
addition of a make dependency. This example adds har dwar e. | i b as a dependency of
myapp. | ku, and that is located in the hwl i b directory:

LI NK_PATH += $(DVD_BUI LD_DI R)/ hwl i b/ obj s/ $(OBJECT DI RECTCRY)

-rri/;':lpp. | ku: $(0BJS) $(I MPORT_LIBS) hardware.lib
$(ECHO) Linking $@
$(L1 NK_EXECUTABLE)

Figure 6 : Adding a Special Library and Path

6.5.1 Automatic Library Path

In order to know whether to add directories to a path, it is necessary to know what the path is initially
set to.

When DVD_EXPORTS is defined, exported libraries are copied into the DVD_EXPORTS directory as
they are built. For this build type, the library path will include the following directories (in the indicated
order):

1

2
3
4

Any paths set in the LI NK_PATH variable.
Sub-library paths (as specified in SUBDI RS variable) - see Section 6.9.2.
The DVD_EXPORTS directory.

A set of directories to search for *.cfg files. These include chip, board and platform config directo-
ries. It also includes DVD_TARGET _PATH directory, if specified.

For an in-place link (when DVD_EXPORTS is not defined), the path will include the following directories:

1 Any paths set in the LI NK_PATH variable.

2 Sub-library paths (as specified in SUBDI RS variable) - see Section 6.9.2.

3 A path entry for the object directory of each imported component. So, if a makefile imports STPIO
and STUART, the path will include fully-qualified directories to both object directories. The direc-
tory name may also include the appended “/ obj s/ $(OBJECT_DI RECTCRY) ", depending if the
particular component supports object directories.

4 A set of directories to search for *.cfg files. These include chip, board and platform config directo-
ries. It also includes DVD_TARGET_PATH directory, if specified.

MAKE SYSTEM - 12 1572

Version 1.0.31 25 August 2009

STAPI

6.6 Adding a Library Target

This section describes the steps involved in adding a library target to a makefile. Take care to add the
respective variables and targets in the appropriate section in the makefile, as defined in Section 5 of
this document.

1
2

Add the name of the library to the TARGETS line. (e.g. add nyapi . | i b to the TARGETS line).

If the library is to be exported (i.e. copied into the public libraries directory specified in the
DVD_EXPORTS variable), add the library and its associated header file to the EXPORTS variable. It
is a basic requirement that a header file must accompany the export of a library. If the library is
local only (a sub-library which will later be incorporated into a higher-level library), it should not be
added to the EXPORTS line - the EXPORTS line can be empty.

Add any components used by the library to the | MPORTS line (if they don't already exist). This
excludes components like STSYS which are header-only imports (see next point).

Add any header-only imports (like STSYS or STBLIT) required by this library to the
HEADER | MPORTS line. For example the makefile could have the following line:

HEADER | MPORTS : = stsys sthlit

Define a new variable (like OBJS) which takes a list of object files which make up the library. All
sources (*. c files) for these objects should exist in the build directory. For example, the makefile
may have the following line:

OBJS := one.tco two.tco three.tco

It is important to understand that the make system has pre-defines rules which understand how to
produce *. t co from *. ¢ (the “*” part will be named consistently). It is therefore imperative for the
objects listed to be named appropriately.

Define a target which describes how to build the library:

nyapi.lib: $(0BIS)
$(BUI LD_LI BRARY)

Take care to indent the $(BUI LD_LI BRARY) macro with a TAB and not spaces, or this will cause
an error in the build (this will result in a “missing separator” error in the makefile).

Make sure that the “clean” target deletes all intermediary files and targets introduced. For exam-
ple, the “clean” target could look like this:

cl ean:
@(ECHO d eani ng $(TARGETS)
-$(RM $(0BIS)
-$(RM) $(TARCETS)

Ensure that the commands use the $(ECHO) and $(RM variables as this ensures portability
across PC and Solaris machines. Furthermore, do not add any command flags which will
compromise this portablility. The addition of the “- " (minus) before the $(RM commands will mean
that the make will continue even if errors occur in the command.

6.7 Adding an Executable Target

This section deals with building an executable target within a makefile. Take care to add the respective
variables and targets in the appropriate section in the makefile, as defined in Section 5 of this
document.

b7

MAKE SYSTEM - 13

25 August 2009 Version 1.0.31

STAPI

1 Add the name of the executable to the TARGETS line (e.g. add myapp. | ku)

2 Add any components to the | MPORTS line, if they do not already exist as an import. A
rule-of-thumb is that any component header file used should be added as an import. This excludes
components like STSYS (see next point).

3 Update the HEADER | MPORTS line to include any header-only import components. This includes
components like STSYS and STCOUNT.

4 Define a new variable that lists the object files which make up the executable. All sources (*. ¢
files) for the build objects should exist in the build directory. The makefile may include the following
line:

APP_OBJS : = appl.tco app2.tco
See note for item 5 of Section 6.6 - it applies to this section too.

5 Define a new variable which sets the linker entry point for the executable. For our example so far,
we may have the following line in the makefile:

nyapp_INIT := board_init

Note that this is only necessary if DVD_LI NK_| NI T has not been set or if you wish to override the
value of DVD_LI NK_|I NI T (Section 7.15).

For the ST20, this value is used as the -p parameter to the link operation. For any further
description of this, refer to the toolset documentation.

6 Optionally define a new variable which can add link flags to the link process. See Section 6.4.2 for
further information.

7 Define a target which describes how to build the executable. The following line may be sufficient:

nyapp. | ku: $(APP_OBJS) $(1 MPORT_LI BS)
$(LI NK_EXECUTABLE)

The executable myapp.lku will include the two object files listed in APP_OBJS, the libraries from the
imported components and the ST20 libraries (the latter are automatically added by the
LI NK_EXECUTABLE macro).

When building the executable, the make system will traverse the component directories listed in
the | MPORTS to ensure that their libraries are built. It is necessary for the | MPORTS line to include
all components used (including those not directly referenced, but only used by imported
components) otherwise not all libraries will be included in the link.

Take care to indent the $(LI NK_EXECUTABLE) macro with a TAB and not spaces, or this will
cause an error in the build (this will result in a “missing separator” error in the makefile).

8 Make sure that the “clean” target deletes all intermediary files and targets introduced. For exam-
ple, the “clean” target could look like this:

cl ean:
@(ECHO d eani ng $(TARCETS)
-$(RM $(APP_OBIS)
-$(RM) $(TARCETS)
Ensure that the commands use the $(ECHO) and $(RM variables as this ensures portability
across PC and Solaris machines. Furthermore, do not add any command flags which will

compromise this portablility. The addition of the “- ” (minus) before the $(RM commands will mean
that the make will continue even if errors occur in the command.

MAKE SYSTEM - 14 IS72

Version 1.0.31 25 August 2009

STAPI

6.8

6.9

6.9.1

b7

Uploading and Running an Executable

Uploading an executable to target hardware via a JEI or microconnect can be achieved through the
make system. It is beyond the scope to describe this process fully, except that the make system
includes a special target to automate the running of the executable.

If there is only one executable built by the makefile, it is easy to run the executable with the command:
make run TARCET=j ei _nane

If there are a number of executables built by the makefile (in the TARGETS line), it is a little more
complicated:

* The command above will run the first executable in the TARGETS list.

* Each of the target executables can be run by a special form of the “make run” command. If the
TARGETS lists one. | ku and t wo. | ku, the following two commands will run the respective
executable:

make one. | ku_RUN TARGET=j ei _nhane
or
make two. | ku_RUN TARGET=j ei _nhane

Note that the run target is not support for earlier version makefiles, because they invariably defined
their own run target. A version 2 makefile is defined as a makefile with DVD_MAKE_VERSI ON set to 2
(as shown in all the makefile templates).

Building Sub-Libraries

In the Same Directory

This should be used to create a library that is linked with an application. The library may also be
exported. The following sample makefile builds t est app. | i b and then links that library into
t est app. | ku.

MAKE SYSTEM - 15

25 August 2009 Version 1.0.31

STAPI

HEADER | MPORTS : = stsys stcount
| MPORTS : = staud stavnmem testt ool

TARCETS : = testapp.lib testapp.lku

APP_OBJS :
LI B_OBJS :

mai n.tco
init.tco audio_tests.tco

i ncl ude $(DVD_MAKE)/ def rul es. mak

testapp_INT := board_init
testapp. | ku: $(APP_OBJS) testapp.lib $(| MPORT_LI BS)
$(LI NK_EXECUTABLE)

testapp.lib : $(LIB_0OBJS)
$(BUI LD_LI BRARY)

cl ean:
$(ECHO) C eani ng testapp
-$(RV) $(APP_OBJS)
-$(RM) $(LI B OBIS)
-$(RM $(TARGETS)

Figure 7 : Building a Sub-Library in the Same Directory

Note the following important points about Figure 7:

There are two targets t est app. | i b and t est app. | ku. It is not strictly necessary to list
testapp.lib in the TARGETS line, as long as it is listed as a dependency for t est app. | ku. Itis,
however, good practice to list it in the TARGETS line to make it immediately obvious that a library is
created in the build process.

The library is not exported by this makefile (there is no EXPORTS line).

The two variables APP_0OBJS and LI B_OBJS contain a list of objects that form part of the
executable and library respectively. These variables are used when defining the target for
testapp.l kuandtestapp.lib.

The separation of the mai n. t co from the library is generally done to separate the C entry function
(mai n()) from the library (it is generally undesirable to include a function mai n() in a library). In
this case the library is not exported, so the mai n() function could be included in the library.

A sub-library in this case is actually unnecessary because of the small number of files that get
inserted into the library and application.

6.9.2 In a Sub-Directory

Many STAPI components build sub-libraries which are combined to produce the component library.
The following imaginary component makefile provides such an example.

MAKE SYSTEM - 16 IS72

Version 1.0.31 25 August 2009

STAPI

1

2

3 HEADER_| MPORTS : = stsys

4 I MPORTS : = stvid stvin stvout stlayer stpti stdenc
5 EXPORTS : = sttla.lib sttla.h

6

7 TARGETS : = sttla.lib

8 SUBDI RS : = tlaapi enhance

9

10 OBJS :=tla_init.tco sttla.tco tla extra.tco
11

12 |li ncl ude $(DVD_MAKE)/ defrul es. mak
13

14 ||sttla.lib : $(O0BJS) $(SUBDI R _LIBS)
15 $(BU LD_LI BRARY)

16

17 ||cl ean: $(SUBDI R_CLEAN)

18 $(ECHO d eani ng $(TARGETS)
19 -$(RV) $(0BIS)

20 -$(RM $(TARGETS)

21

22

Figure 8 : Building a Sub-Library in a Subdirectory

Note the following important points about this example:

b7

The target for this directory isstt 1 a. | i b. The library includes three objectfiles (t 1 a_i nit. t co,
sttla.tcoandtl a_extra.tco)andtwo sub-libraries (t | aapi . | i b and enhance. | i b). The
sub-libraries are implicitly named based on the subdirectories that they are built in.

Line 8 is important for the building of the sub-libraries. The list assigned to SUBDI RS is used by the
make system to create a set of default build rules for the subdirectory libraries.

The SUBDI R_LI BSlisted as a dependency on line 14, ensures that the make system will build the
sub-libraries when creating sttla.lib. This variable is automatically assigned by the make system.

The libraries will automatically be addedto st t| a. | i b by virtue of the inclusion of SUBDI R_LI BS
as a dependency.

The sub-libraries are built within the appropriate subdirectories. In order for the BUI LD_LI BRARY
macro to locate them, the subdirectories are automatically added to the library include path.

The make system also automatically adds the subdirectories to the include path, so that the
toplevel makefile can access any private header files in those directories.

The final part of the puzzle is to ensure that the “cl ean” macro will clean the sub-library build too.
This is achieved by adding the SUBDIR_CLEAN as a dependency to the “clean” target.

The makefiles in the subdirectories don't need any special requirements except that they produce
a correctly named library.

Quite often the makefiles in the subdirectories need to have access to header files in the parent
directory. This can be achieved by adding the following line to the subdirectory makefile:

| NCLUDE_PATH : = $(dir $(DVD_BU LD DIR)) $(| NCLUDE_PATH)

MAKE SYSTEM - 17

25 August 2009 Version 1.0.31

STAPI

6.10

6.11

6.12

Overriding Configuration (*.cfg) Files

When a user wishes to override configuration files, it is often desirable not to modify the files in the
confi g/ boar d directory (in an installed tree) or the board VOB (for a development tree). This can be
achieved by setting an environment variable DVD_USER_CONFI Gto refer to a private configuration
directory. This directory should have a pl at f or m chi p, boar d and bl ock sub-directories. Any
configuration files placed in the board sub-directory will take precedence over files of the same name
in the configuration directory or board VOB.

Adding Optional System CFLAGS in a Makefile

The make system creates a variable called OPTI ONAL_ CFLAGS which contains extra defines that may
be appended to CFLAGS. This allows a makefile to easily pass configuration information to the compile
process, when required. The following lines may be included in a makefile:

CFLAGS += $(OPTI ONAL_CFLAGS)

or

audi nit _CFLAGS += $(OPTI ONAL_CFLAGS)
The following notes apply:

* The OPTI ONAL_CFLAGS currently includes a define for the DVD_TRANSPORT variable of
- DDVD_TRANSPORT_DVD_TRANSPORT. E.g: this may result in DVD_TRANSPORT_PTI .

* |talsoincludes a define for each chip in the CHI P_LI ST of - DST_CHI P E.g. - DST_7015. See
Section 6.12 for information about CHI P_LI ST.

* See Section 6.2 for more information about setting CFLAGS.
* Other make system configuration files may add to the optional CFLAGS.

* C source files may test these defines as it would any other define.

Multi-Chip Support

This section deals with tasks associated with the multi-chip support, which allows the make system to
automatically import the appropriate files to support a platform. Of primary interest is the types and
location of the configuration files. There are 3 types of configuration files:

1 Platform configuration files (named pl at f or m nmak).
2 Chip configuration files (named chi p. nak).

3 Block configuration files (named bl ock. nak).
The location of these files differ between development and installation environments:

1 For development environments:
1.1 Platform configuration files are located in the platform VOB (dvdbr - prj - pl at f or m.
1.2 Chip configuration files are located in the chip VOB (dvdbr - prj - chi p).

1.3 Block configuration files are located in the component VOB, depending which component they
relate to (the file must exist in the same directory as the makefile which refers to it).

2 For installation environments:

MAKE SYSTEM - 18 IS72

Version 1.0.31 25 August 2009

STAPI

2.1 Platform configuration files are located in the pl at f or msub-directory of the conf i g directory
(this directory is at the same level as the sr ¢, i ncl ude and nmake directories).

2.2 Chip configuration files are located in the chi p sub-directory of the conf i g directory.

2.3 Block configuration files are located in the component directory (the file must exist in the same
directory as the makefile which refers to it).

6.12.1 Defining a New Platform File

This section describes how to create a new platform file in the platform VOB of the development
environment. The following points should be considered when creating the platform file:

1 Decide on the name of the platform. The choice is based on one of two decisions:

1.1 If the platform is merely a variant of an existing platform (e.g. a variant of mb282b), it is unnec-
essary to create a new DVD_PLATFORM(see 1.2, below). Instead, take a name which indicates
its relation to the original. This name would be assigned to DVD_CONFI G_PLATFORM For
example we may assign a name of nb282b_nyvari ant .

1.2 If the platform is not a variant, it would be necessary to create a complely new platform name
which is assigned to DVD_PLATFORM This addition will require a change to the make system
files - the value of DVD_FRONTEND must be checked in sysconf . mak.

2 At this point either DVD_PLATFORMwill refer to a new platform name or DVD_CONFI G_PLATFORM
will refer to a new variant. The latter value will override any setting of the former for the purposes of
multi-chip configuration. The overriding name will be used to load the equivalently named platform
file from the platform VOB. For example, if the DVD_CONFI G_PLATFORMis set to
nb282b_nyvari ant, the file mh282b_rmyvari ant . mak file will be loaded from the platform
VOB.

3 Create an appropriately named platform file in the platform VOB, based on 2, above. The platform
file generally includes a variable CHI P_LI ST which defines the list of chips found on that platform.
E.g.:

CHI P_LI ST := 5512 4600 stv0299 vgl011

3.1 The platform file can also provide platform configuration defaults. The variables that may be set
are the following: DVD_PLATFORM DVD_FRONTEND, DVD_BACKEND, DVD_SERVI CE and
DVD_TRANSPORT. The following lines may be found in a platform config file:

i f ndef DVD PLATFORM
DVD PLATFORM : = nh282b
endi f
i f ndef DVD_BACKEND
DVD BACKEND : = 7015
endi f
i f ndef DVD_TRANSPORT
DVD_TRANSPORT : = stpti
endi f

3.2 The setting of DVD_PLATFORMin the platform configuration file, has an extra requirement: the
platform configuration must be specified using the DVD_CONFI G_PLATFORMvariable. This is to
reduce confusion with DVD_PLATFORMchanging value when the platform file is loaded.

4 For each of the chips listed in the CHI P_LI ST, make sure that an appropriate chip file exists in the
chip VOB (see Section 6.12.2).

IS72 MAKE SYSTEM - 19
25 August 2009 Version 1.0.31

STAPI

6.12.2 Defining a New Chip File

6.12.3

6.12.4

This section describes how to create a new chip configuration file in the chip VOB of the development
environment. The following points must be considered when creating the chip file:

1

Chip files are named according to the chip names listed in each CHI P_LI ST line of platform con-
figuration files. For each name in the list, a corresponding chi p. mak must be created in the chip
VOB.

An appropriately named chip configuration file should be created in the chip VOB. The file
5512. mak may look something like this:

BLOCKS := pti3 ... mnpeglcell
BLOCK_LIST := $(filter-out $(BLOCKS), $(BLOCK LI ST)) $(BLOCKS)

The first line defines the list of blocks used by this chip (this is a temporary variable). The ellipses
used here indicate that there are likely to be more blocks listed (it is not some special makefile
usage).

The second line updates the BLOCK_LI ST with the blocks used by the chip - the line makes sure
that the list has a unique list of blocks.

For each of the blocks in the BLOCK LI ST, an appropriate block configuration file must be created
in the component directory where it is required (see Section 6.12.3).

Defining a New Block File

This section describes how to create a new block file in the component VOB of the development
environment. The following points must be considered when creating a block file:

1

Block files are named according to the block names that appear in the BLOCK LI ST of a chip con-
figuration file. These block files are located in the same directory as the component makefile which
makes use of the block configuration. This means that this section should be defined in conjunc-
tion with the changes in a makefile listed in Section 6.12.4.

For each block requiring configuration in a particular makefile, create an bl ock. nmak file.

A block configuration file called npeglcel | . nak may be create in the STAUD component direc-
tory and may look like this:

STAUD_MPEGLCELL := YES

The result of the included configuration files is that a makefile will be able to test for the existence
of STAUD MPEGLCELL to alter its build behavior. See Section 6.12.4 for a further discussion on
how to achieve this.

Using Block Configuration in a Makefile

Given the definitions created by each of the block configuration files, a makefile needs to alter its build
behavior. The following part of a makefile indicates how the STAUD makefile may take the definition of
STAUD MPEGLCELL into account:

MAKE SYSTEM - 20 IS72

Version 1.0.31 25 August 2009

STAPI

6.12.5

6.12.6

b7

OBJS := aud_api.tco aud_hal .tco ... aud_dbg.tco

i fdef STAUD MPEGLCELL
OBJS : = $(0BJIS) hal _npeglcell.tco
endi f

Figure 9 : Adding Configured Object Files

Some important notes about this example:

* The inclusion of hal _npeglcel | .t co is dependent on the definition of STAUD MPEGLCELL.
This only occurs when the npeglcel | . nmak is included.

* The use of ellipses is just to indicate missing parts of the makefile - this allows the example to
concentrate on the important changes.

* The use of the “: =" assignment is important. This is known as an immediate assignment which
allows the value of OBJS to be progressively updated. The “+=" immediate assignment may also
be used. It is possible to use the “=" or recursive assignment in the correct circumstance. Since
erroneous use of this will cause a makefile error it is better to use the “: =" and “+=" format only.

A makefile may also use the configuration to adjust the group of sub-libraries built for a platform. As an
example, a makefile may add the following lines to a HAL library:

i fdef STAUD MPEGLCELL
SUBDI RS += npeglcel |

endi f

hal . 1'ib: $(SuUBDI R_LI BS)
$(BUI LD_LI BRARY)

Figure 10 : Adding Configured Sub-Libraries

Overriding Platform or Chip Configuration Files

The platform and chip configuration files are shipped as part of an installed tree in the directories
indicated by Section 6.12. It is often a requirement to override the configuration files in a manner
ensuring that changes will not be destroyed as part of a new release. This is especially true for
customers. In a similar manner to the overriding the *. cf g files (as discussed in Section 6.10),
platform, chip and block files may be overridden by files in the appropriate sub-directory of the
DVD_USER_CONFI Gdirectory (if set).

Platform files, defined in the same manner as described in Section 6.12.1, can be inserted in the
pl at f or msub-directory. These files will be used in preference to the system configuration files.

Chip files, defined in the same manner as described in Section 6.12.2, can be inserted in the chi p
sub-directory. These files will be used in preference to the system configuration files.

Adding Private Block Configuration Files

Referring to Section 6.12.3 and Section 6.12.5, new blocks referred to in the chip configuration files
may be created privately (not in the component directory). These files can be inserted in the bl ock

MAKE SYSTEM - 21

25 August 2009 Version 1.0.31

STAPI

sub-directory of the DVD_USER_CONFI Gdirectory. This directory is also searched for block
configuration files and take precedence over component block files.

6.13 Adding Multi-Architecture Support
6.13.1 Introduction
A new feature in the make system provides support for ST40 and ST200 architecture builds. This is
termed “multi-architecture support” within this document, as it allows makefiles to build objects for the
ST20, ST40 and ST200. It is important to recognize that the use of object directories was introduced
for the sole purpose of allowing binaries for multiple architectures to co-exist within the tree. As such,
makefiles should support object directories in order to support ST40 and ST200 builds.
6.13.2 Modifying an ST20 Makefile to Support ST40
This section considers the changes required to convert a version 2, ST20 makefile to support ST40
and ST200 builds.
A library component makefile, like the one in Figure 3 on page 5, could be converted to look like this:
1 ST20_| MPORTS : = stpio
2 ST20_EXPORTS : = sti2c.h sti2c.lib
3 ST20_TARCETS := sti2c.lib
4
5 |[ST40_I MPORTS : = $(ST20_| MPORTS)
6 ||ST40_EXPORTS : = sti2c.h $(LI B_PREFI X)sti2c$(LI B_SUFFI X)
7 ||ST40_TARGETS : = $(LIB_PREFI X)sti 2c$(LI B_SUFFI X)
8
9 ST200_| MPORTS : = $(ST20_| MPORTS)
10 (|ST200_EXPORTS : = sti2c. h $(LIB_PREFI X)sti 2c$(LI B_SUFFI X)
11 ||ST200_TARGETS : = $(LI B_PREFI X) sti 2c$(LI B_SUFFI X)
12
13 |# local objects which conprise this conponent
14 ||ST20_OBJS : = sti2c.tco
15 (|ST40_OBJS : = $(call ST200BJ_TO ST400BJ, $(ST20_0BJIS))
16 |(|ST200_OBJS : = $(call ST200BJ_TO ST2000BJ, $(ST20_0BJIS))
17
18 ||CFLAGS += - DBOTHCFLAGS
19 |([ST20_CFLAGS += - DMYST20FLAG
20 |([ST40_CFLAGS += - DMYST40FLAG
21 |[ST200_CFLAGS += - DMYST200FLAG
22
23 |li ncl ude $(DVD_MAKE)/ def rul es. mak
24
25 ||$(LI B_PREFI X) sti 2c$(LI B_SUFFI X): $($(ARCH TECTURE) _OBJS)
26 $(BUI LD_LI BRARY)
27
28 |cl ean:
29 @cho d eaning sti2c
30 -$(RM $($(ARCH TECTURE) _OBJS)
31 -$(RM $($(ARCH TECTURE) TARGETS)
Figure 11 : A Combined ST20/ST40/ST200 Makefile
MAKE SYSTEM - 22 1577

Version 1.0.31 25 August 2009

STAPI

The following points apply to this figure:

The ellipses indicate where the top and bottom of the makefile have been omitted for brevity.

The make system refers to ST20 XXX variables when processing the makefile for an ST20 build.
Similarly it uses ST40_XXX for a ST40 build and ST200_XXX for a ST200 bui I d. For this
reason, the basic objectives are to define the appropriate variables for the ST20, ST40 and ST200.

The imports for this component are the same. As such, line 5 assigns the initial list to the
ST40_| MPORTS and line 9 assigns to ST200 | MPORTS.

The naming convention of objects, libraries and executables differs between the ST20 and ST40/
ST200. As such, lines like ST40_EXPORTS and ST40_TARGETS must name the targets
appropriately. Since the naming convention for these objects is also defined, a macro can be called
to automatically convert library and executable target names between the ST20 and ST40 and
between ST20 and ST200. For example, the following lines could replace lines 6 and 7 for ST40
and lines 10 and 11 for ST200:

ST40_EXPORTS : = $(call ST20LI B_TO _ST40LI B, $(ST20_EXPORTS))
ST40_TARGETS : = $(call ST20LI B_TO ST40LI B, $(ST20_TARCGETS))

ST200_EXPORTS :
ST200_TARGETS :

$(cal |l ST20LI B_TO ST200LI B, $(ST20_EXPORTS))
$(cal |l ST20LI B_TO ST200LI B, $(ST20_TARGETS))

The makefile defines three variables ST20_0BJS, ST40_0OBJS and ST200_0OBJS which list the
objects in the ST20, ST40 and ST200 library respectively. The lines 15 and 16 could explicitly
define the name of the object file:

ST40_OBJS := sti2c.o
ST200_OBJS : = sti2c.o

Lines 18 to 21 describe how compile flags are updated for ST20, ST40 and ST200 builds. Any
flags assigned to CFLAGS will be applied for ST20, ST40 and ST200 builds. Flags assigned to
ST20_CFLAGS, ST40_CFLAGS and ST200_CFLAGS will be applied for ST20, ST40 and ST200
builds respectively.

Link flags are selectively applied to ST20, ST40 and ST200 in the same manner as indicated
above. The applicable variables are LKFLAGS, ST20_LKFLAGS, ST40_LKFLAGS and
ST200_LKFLAGS. This particular example does not involve a link phase, so link flags would be
meaningless here.

Include paths and link paths are unchanged for ST20, ST40 and ST200 builds.

Lines 25 and 26 define a generalised rule for building the ST20, ST40 and ST200 export library.
They have the appropriate object list variable as dependency and use the BUI LD LI BRARY
macro. This macro is defined appropriately for an ST20, ST40 and ST200 build.

The “clean” target (lines 28 to 31) is complex because the single target must work for ST20, ST40
and ST200. This relies on the similar naming of the ST20, ST40 and ST200 variables. For
example, line 30 will be replaced by ST40_0OBJS when building for an ST40 architecture and by
ST40_0OBJS when building for an ST200 architecture.

A makefile which includes executable targets, like the one listed in Figure 5 on page 9, could be
converted to the following:

b7

MAKE SYSTEM - 23

25 August 2009 Version 1.0.31

STAPI

ST20_I MPORTS :

= sttbx stuart stpio
ST20_TARGETS : = nyprog. | ku
ST40_| MPORTS : = sttbx stpio
ST40_TARGETS : = $(call ST20EXE_TO_ST40EXE, $(ST20_TARGETS))

ST200_1 MPORTS :
ST200_TARGETS :

sttbx stpio
$(cal | ST20EXE_TO ST200EXE, $(ST20_TARGETS))

©OoO~NOOOUHA WNPF

10 (|ST20 _OBJS := one.tco two.tco three.tco
11 ||ST40_OBJS := one.o two.o0 four.o
12 ||ST200_OBJS := one.o five.o

13

14 |(jmyprog_INIT := entry_point

15

16 ||i ncl ude $(DVD_MAKE)/ defrul es. mak
17

18 ||lmypr og$(EXE_SUFFI X) : $($(ARCH TECTURE) _OBJS) $(| MPORT_LI BS)
19 $(LI NK_EXECUTABLE)

20

21 |[cl ean:

22 @cho Cl eani ng nyprog

23 -$(RM $($(ARCH TECTURE) _0BJS)

24 -$(RVM) $($(ARCHI TECTURE) TARGETS)

Figure 12 : A Combined ST20/ST40/ST200 Makefile for Executables

The following points apply to this example:

The ellipses indicate where the top and bottom of the makefile have been omitted for brevity.

The make system refers to ST20 XXX variables when processing the makefile for an ST20 build.
Similarly it uses ST40_XXX for an ST40 build and ST200_XXX for a ST200 bui | d. For this
reason, the basic objectives are to define the appropriate variables for the ST20, ST40 and ST200.

The imports in this contrived example are different. As such, the ST40_I| MPORTS and
ST200_I MPORTS defines its own list of imports.

Line 5 of the makefile shows how to automatically assign ST40_TARGETS while taking into
account the differences in naming convention between the ST20 and ST40 architectures. Line 8
shows the same for a ST200 target.

The makefile defines the variables ST20_0BJS, ST40_0BJS and ST200_0OBJS which list the
objects in the ST20, ST40 and ST200 executables. The ST40/ST200 executable includes different
objects, so the new list is assigned to the variable.

Lines 18 and 19 define a generalised rule for building the ST20, ST40 and ST200 executables.
They have the appropriate object list variable as dependency.

This rule includes | MPORT_LI BS as a dependency. This variable is defined appropriately for a
ST20, ST40 and ST200 build.

This rule uses the LI NK_EXECUTABLE macro to build the target. This macro is also defined
appropriately for the different architecture builds. The only difference between the ST20 and ST40/

MAKE SYSTEM - 24 IS72

Version 1.0.31 25 August 2009

STAPI

6.13.3

Note

6.14

Note

b7

ST200 use of this macro is that the ST20 version requires the definition of an entry point for the
executable. This is defined on line 14.

* The “clean” target (lines 21 to 24) is complex because the single target must work for ST20, ST40
and ST200. This relies on the similar naming of the ST20, ST40 and ST200 variables. For
example, line 23 will be replaced by ST40_0OBJS when building for an ST40 architecture.

* The example in Figure 11 explains the method for customizing compile and link flags for
multi-architecture builds.

Using Multi-Architecture Make

When a makefile supports ST20, ST40 and SPARC builds, the objects are built by one of the following
commands:

* Build for ST20

make
or
make ARCH TECTURE=ST20

* Build for ST40

make ARCHI TECTURE=ST40
* Build for SPARC

make ARCHI TECTURE=SPARC
* Build for ST200

make ARCHN TECTURE=ST200

The alternative to providing the architecture on the command-line is to set the entry in the
environment. For example on a PC, the following will always build the ST40 architecture build:

set ARCH TECTURE=ST40

The DVD_| NCLUDE_EXPORTS directory will be used as the location for exported header files, for
ST20, ST40 and ST200 builds. These will have to be changed before running “make” if a different
location is required.

Setting an OS21 Executable Region

This is only applicable to OS21.

An OS21 executable can be run in a particular region of memory or on the simulator. The make
system allows the makefile to specify the region in the following way:

<exe_target> REG ON : = p2
For example, overriding the placement region for target one.exe, the following line will suffice:
one_REG ON : = p2

If the region is not specified in the makefile, the value will default to the value of the 0S21_REGQ ON
variable. This in turn, will default to a value of p1, if not set in the environment.

MAKE SYSTEM - 25

25 August 2009 Version 1.0.31

STAPI

6.15

Note

6.16

6.16.1

6.16.2

6.16.3

Setting the OS21 Runtime Library
This is only applicable to OS21.

By default, an OS21 executable is linked with the production library. This can be overridden to use the
debug library by setting:

0S21_RUNTI ME_LIB : = 0s21_d

Passing Arguments When Running

The make system supports the passing of arguments when running executables for ST20, ST40 or
ST200.

ST20

Set one of the following two variables when invoking make: DVD_RUNARGS or ST20_RUNARGS. For
example:

make run TARGET=j ei DVD_RUNARGS=ar gs
or

make run TARCGET=j ei ST20_RUNARGS=ar gs
Note:

* DVD_ RUNARGS will be passed to ST20 and ST40 builds. ST20_RUNARGS will only be passed to
ST20 builds.

ST40

Set one of the following two variables when invoking make: DVD_RUNARGS or ST40_RUNARGS. For
example:

make run TARGET=j ei DVD_RUNARGS=ar gs
or

make run TARCGET=j ei ST40_ RUNARGS=ar gs
Note:

¢ DVD_ RUNARGS will be passed to ST20 and ST40 builds. ST40_RUNARGS will only be passed to
ST40 builds.

ST200

Set one of the following two variables when invoking make: DVD_RUNARGS or ST200_RUNARGS. For
example:

make run TARGET=j ei DVD_RUNARGS=ar gs
or
make run TARCGET=j ei ST200_ RUNARGS=ar gs

Note:

MAKE SYSTEM - 26 IS72

Version 1.0.31 25 August 2009

STAPI

6.17

6.18

6.19

6.20

b7

* DVD_RUNARGS will be passed to ST20, ST40 and ST200 builds. ST200_RUNARGS will only be
passed to ST200 builds.

SPARC Toolset Support

The make system also supports build operations using the SPARC toolset (DVD_TOOLSET set to
SPARC). This is analogous to the ST40 support in that the following make system variables are defined
in the makefile to build SPARC targets:

SPARC_TARCETS
SPARC_EXPORTS
SPARC_| MPORTS

Creating a New “Version 2" Makefile
This section describes the procedure for creating a new “version 2” makefile.

The makefile creation process will vary according to the targets to be built by the makefile. The
following list describes the actions to be taken or points that need to be considered:

1 The first action is to acquire a template makefile which closely matches the requirements of the
makefile. Refer to Appendix : Makefile Templates on page 46. This will provide the starting point
for most makefiles.

2 Modify the makefile template as directed in the appendix - this will provide the rudiments for a
makefile.

3 The makefile should now be modified with any optional parts. These may include the following
parts:

3.1 Compile flags (see Section 6.2).
3.2 Include path (see Section 6.3).

3.3 Link flags (see Section 6.4).

3.4 Library path (see Section 6.5).

3.5 Sub-library builds (see Section 6.9).

3.6 Conditional parts based on configuration (see Section 6.12.4).

Converting an Existing Makefile to “Version 2”

The preferable approach when converting a makefile to “version 2" is to replace the makefile using the
methods listed above. This will reduce any future maintenance issues.

LINUX OS Support

The make system also supports build operations for LINUX OS on ST40 platforms. The following
make system variables are defined in the makefile to build on STLINUX

DVD_CS shoul d be |inux
KDI R shoul d be defined as the path of the kernel.

MAKE SYSTEM - 27

25 August 2009 Version 1.0.31

STAPI

Build Options

This section provides information on the various variables that can be set to modify the build behavior.
These options are listed in the following sub-sections which describe their purpose.

7.1 Basic Options

These three option variables are usually set for a build (see Section 5.5.1 for more information):

e DVD _MAKE

e DvVD_ROOT

e DVD_| NCLUDE

When the DVD_| NCLUDE option is not specified, the make system will try and perform in-place

includes (i.e. it will try and use the component header files from their location in the VOB). This will not

work in an installation environment. It is necessary for each component to ensure that all components
that it uses are added to the | MPORTS or HEADER_| MPORTS part of the makefile. If the list is
incomplete, the build of a component will not work.

When building a mixture of version 1 and version 2 makefiles, it may sometimes be necessary to

define a variable “DVD_BASE_HEADER_| MPORTS". This is a list of components directories to add to

the include path for version 1 makefiles. This is required to support in-place includes for version 1

makefiles. For example:

DVD_BASE_HEADER | MPORTS : = stevt stsys stcount

7.2 Exporting STAPI Libraries

Variables: EXPORTS, ST20_EXPORTS, ST40_EXPORTS, ST200_EXPORTS

* For ST20 builds, the make system will use ST20_EXPORTS or EXPORTS (if ST20_EXPORTS is not
defined).

¢ For ST40 builds, the make system will use ST40_EXPORTS or EXPORTS (if ST40_EXPORTS is not
defined).

* For SPARC builds, the make system will use SPARC_EXPORTS or EXPORTS (if SPARC_EXPORTS is
not defined).

* For ST200 builds, the make system will use ST200_EXPORTS or EXPORTS (if ST200_EXPORTS is
not defined).

* The variable must refer to a directory to which the STAPI libraries are to be copied when they are
built.

* The directory must be writable by the user.

¢ |f the variable is set, but the directory does not exist, it will be created.

* |f the variable does not exist then the libraries will not be exported.

* If the variable does not exist, nor will a central repository for the built libraries. In this case the
make system will attempt to use the libraries from their location within the tree (in both
development and installation environments). If a components | MPORTS list is incomplete, this
method will not work.

MAKE SYSTEM - 28 1574

Version 1.0.31 25 August 2009

STAPI

7.3

7.4

7.5

7.6

7.7

b7

Exporting STAPI Headers
Variable: DVD_I NCLUDE_EXPORTS

* The variable must refer to a directory to which the STAPI headers are to be copied during the build
process.

* The directory must be writable by the user.
¢ |f the variable does not exist, then nothing will be exported.

¢ |f the variable exists but the directory does not, the directory will be created.

Future of DVD_FRONTEND and DVD_BACKEND

* These define the frontend (or main processor) and the backend (or video decode processor).

* These variables are effectively obsolete. The multi-chip support described in Section 6.12 allows
more accurate configuration of platform-specific options.

¢ |f not specifically set, the DVD_PLATFORMdetermines the values for DVD_FRONTEND and
DVD_BACKEND.

* Makefiles may use the DVD_FRONTEND (e.g. 5510, 5512, TP3) and DVD_BACKEND to modify its
behavior.

* Both values may be specified in a platform configuration file (see Section 6.12).

Building for ST20, ST40 and ST200

Variable: ARCH TECTURE

Options: ST20, ST40, STLI NUX, ST200 or SPARC
Default: ST20

¢ This will instruct the make system to build for the ST20, ST40 or ST200. The appropriate build
tools must be installed.

The specified architecture is used to set a CFLAGwhich is provided to all compilations. The CFLAGIs
- DARCHI TECTURE_ARCHI TECTURE. A C program can therefore test for the definition of

ARCHI TECTURE_ST20, ARCHI TECTURE_ST40, ARCHI TECTURE_LI NUX ,

ARCHI TECTURE_ST200 or ARCHI TECTURE_SPARC.

Overriding Config Files
Variable: DVD_USER_CONFI G

* This allows the user to override the *. cf g files and multi-chip configuration files (see Section 6.10
and Section 6.12.5).

* The directory referred to in the variable must have a platform, board, chip and block sub-directory.
Files must be placed in the appropriate sub-directory, according to the directions in the above
references.

Specifying an Alternate Main Config File
Variable: SPECI AL_CONFI G_FI LE

MAKE SYSTEM - 29

25 August 2009 Version 1.0.31

STAPI

* The main config file is the “entry point” config file used when linking or running an executable. This
generally depends on the setting of the DVD_PLATFORM For example, if DVD_PLATFORMwere set
to mb282h, the “entry point” config file would be nb282b. cf g.

¢ Defining this variable in the build environment or in the platform config file will override any system
default config file. For example, in the above example where DVD_PLATFORMis set to nb282b,
setting SPECI AL_CONFI G_FI LE to ny_nb282b. cf g will mean that a file by that name will be
used instead.

* The only requirement is that the config file exist on the search path, including the
DVD_TARGET_PATH directory (see Section 7.6 and Section 7.10).
7.8 Specifying an Optional Config File
Variable: OPTI ONAL_CONFI G FI LE

* The main config file is the “entry point” config file used when linking or running an executable. This
generally depends on the setting of the DVD_PLATFORM For example, if DVD_PLATFORMwere set
to mb282b, the “entry point” config file would be nb282b. cf g.

¢ Defining this variable in the build environment or will specify and optional override to the system
default config file. For example, where DVD_PLATFORMis set to mb361, setting
OPTI ONAL_CONFI G_FI LEto ny_nb361. cf g will mean that a file by that name will be used
instead (if it exists). If it does not exist, mh361. cf g will be used instead.

* The only requirement is that the config file exist on the search path, including the
DVD_TARGET_PATH directory (see Section 7.6 and Section 7.10).
7.9 Specifying the Service
Variable: DVD_SERVI CE
Options: DVB or DI RECTV
Default: DVB
* This variable allows makefiles to select optional parts depending on the required service.

* The DVD_SERVI CE variable is used to set a CFLAG which is provided to all compilations. The
CFLAGIs - DST_DVD_SERVI CE. A C program can therefor test for the definition of ST_DVB or
ST DI RECTV.

* This option can be set in the platform configuration file (see Section 6.12).

7.10 Path to targets.cfg
Variable: DVD_TARGET_PATH
Default: .
* This variable allows a user to specify the location of the t ar get s. cf g file.

* Itis recommended that the t ar get s. cf g only exist in this directory, as it is one of the last
locations on the search path.

* This allows the user to have at ar get s. cf g outside an installed tree - one that will not be
modified when patches are applied.

MAKE SYSTEM - 30 IS72

Version 1.0.31 25 August 2009

STAPI

7.11

7.12

7.13

Note

7.14

b7

Setting the Build Platform
Variable: DVD_PLATFORM

Options: ST20: mb231, mb282, mb282b, mb275, mb193, mb314, mb5518, mediaref, mb361, mb382,
mb376, espresso, mb390, mb391, mb400, mb385, walkiry, maly3s, mb395, mb457, mb436,
DTT5107, CAB5107, SAT5107, mb634

ST40: mb317a, mb317b,overdrive, mediaref, mb376, espresso, mb411, mb519, mb618, mbh628,
mb680, mb671, mb704

SPARC: explorer4010, explorer8010

ST200: mb390, mb421, mb426, mb428

Default: nh231

* This platform variable determines the DVD_FRONTEND, if it is not specifically set.

* The DVD_FRONTEND is then used to set the DVD_BACKEND if that is not specifically set.

* This option may be set in the platform configuration file (see Section 6.12).

Setting the Configure Platform
Variable: DVD_CONFI G_PLATFORM
Default: DVD_PLATFORM

* This variable is used to change the platform name that is used in the multi-chip support of the
make system (see Section 6.12).

* When not set it will default to DVD_PLATFORM(see Section 7.11).

Setting the Build OS

Variable: DVD_CS

Options: 0S20, 0S21

Default: Based on ARCH TECTURE

* This variable is made available to the make system to vary build rules according to the operating
system that the STAPI component is being built for.

* If not set, the value depends on the setting of ARCHI TECTURE - OS20 for ST20 and OS21 for
ST40/ST200.

From version 2.3.0 of the make system release, the default value has been changed to 0OS21 (from
0S40), since 0S40 is now defunct.

Setting the Build Host
Variable: DVD_HOST
Options: unix, pc, pc-cygwin, win98

Default: Based on detection of host type (unix/pc)

MAKE SYSTEM - 31

25 August 2009 Version 1.0.31

STAPI

* This selects the type of host used for building.

* Setting of this is generally not required. Only required when wanting to build for Microsoft Windows
98, where “win98” is selected

Note Support for Microsoft Windows 98 is only partial, i.e. due to constraints placed by the Microsoft
Windows 98 DOS box and the way that the make system deals with certain operations, operations like
make cl ean do not work.

7.15 Setting the Linker Procedure
Variable: DVD_LI NK_INI'T
Default: board_i ni t
* This variable is used to change the linker procedure invoked by the toolset during the link phase.
¢ When not set it will default to boar d_i ni t).

* This option may be overridden in the target makefile by setting <t arget>_I NI T.

7.16 Building Dependencies
Variable: DVD_DEPENDS
Options: no, yes, t op, al |
Default: yes
* This variable modifies the behavior of building | MPORT_LI BS as a dependency.

* The default behavior (yes), is to build all imported libraries if the variable | MPORT_LI BSiis listed as
a dependency of an object.

¢ Option “no” will suppress building of imported libraries that are listed as dependencies of an
object. This should only be user if all required libraries have been built and not changed. It speeds
up compilation by not traversing the library directories.

¢ Option “top” is used when building within a library directory to ensure that all imported libraries can
be built. When compared to the “all” option, this option will only effect the build in the directory that
“make” is first run.

* Option “all” will build all imported libraries for all components at all levels. This will invariably mean
that the build will take a long time as it will traverse the same directories many times, when
checking that all dependencies are satisfied.

* The variable could be set in the environment, but care should be taken to make sure that all
dependencies are built when required.

* The most common use will be to run “make” as follows:

make DVD_DEPENDS=no

7.17 Changing Toolsets
Variable: DVD_TOOLSET
Options: ST20, ST40, ST200, SPARC.

MAKE SYSTEM - 32 172

Version 1.0.31 25 August 2009

STAPI

7.18

7.19

7.20

7.21

7.22

b7

Default: ARCHI TECTURE
* This variable is offered for future expansion.

* |tis provided for the situation where different compilers are used to build the STAPI libraries. For
example, if the GCC compiler were used, the DVD_TOOLSET may be set to “gnu”. The make
system would then be modified to support the compiler, allowing a different toolset to be used in
the compilation..

Setting the Make Limit
Variable: DVD_MAKELI M T
Default: 15

* The make system places a limit on the depth of recursive calls to “make” that it will allow. This
variable sets that limit.

¢ Bear in mind that builds within an object directory “consume” two levels of recursion in the make
tree.

Setting the Transport

Variable: DVD_TRANSPORT

Options: pti,link,stpti, stpti4 or denux

Default: f or 8010 the default is demux, for others it is pti

* This selects the transport for a platform build.

* This variable is used to update the OPTI ONAL_CFLAGS variable with the following define:
- DST_DVD_TRANSPORT

Doing a Debug Build
Variable: DEBUG

¢ When building with DEBUG=1, the toolset definition will ensure that the compiler creates debug
object files which will be linked into a debug executable.

Changing the compilation optimization
Variable: OPTLEVEL
Options: (toolset dependent) 0..3 for ST200 (0..2 for ST20)

* This will override the default optimization for a compilation. Setting this variable to 0 while doing a
standard build will mean that all compiler optimization will be turned off.

Building a Unified Memory Object
Variable: UNI FI ED_MEMORY
* Building with UNI FI ED_MEMORY=1 will create an object file that runs in unified memory.

* Not all platforms or components will support a unified memory build.

MAKE SYSTEM - 33

25 August 2009 Version 1.0.31

STAPI

* This must also be set when running an executable.

* This option may be set in the platform configuration file (see Section 6.12).

7.23 Creating a Specialized Build Variant
Variable: DVD_BUl LD_VARI ANT
* This allows the user to override the object directory used to store the compiled files (for makefiles
which support object directory builds).
* Setting this to st pti - dvb will mean that the object directory will be called obj s/ st pti - dvb
rather than obj s/ ST20 or obj s/ ST40 or obj s/ ST200.
* From release 2.7.0, creation of subdirectory within object directory is supported. It is possible to
create obj s/ ST20/ xyz.
7.24 Building for Codetest
Variable: DVD_CODETEST
Options: TRUE or FALSE (undefined)
Default: FALSE
* Setting this to TRUE will get the make system to build an application with codetest support.
¢ If this is not defined or set to anything other than TRUE, codetest support will be omitted.
* |tis beyond the scope of this document to provide more information about using codetest.
7.25 Generating a map file
Variable: GENERATE_MAP
* Building with GENERATE_MAP=1 will generate a map file when linking an executable in a makefile
which does not support map file generation.
* The make system automatically includes the toolset commands to generate a map file, so if the
makefile already deals with this, do not define this variable. Doing so may cause the link to fail.
7.26 Use 0S20 debug Kernel
Variable: USE_DEBUG KERNEL
¢ linking with USE_DEBUG_KERNEL=1 in the environment will make the st20 linker use the debug
versions of the kernel with extra assertions and checking.
7.27 Suppressing the clean_all target
Variable: SUPPRESS_CLEAN_ALL
* Defining this variable at the top of a makefile causes the make system to suppress the default
cl ean_al | target.
* This is desirable in situation where the standard cl ean_al | target does not perform the required
operations or has some undesired side-effect (such as cleaning the exports directory).
MAKE SYSTEM - 34 1572

Version 1.0.31 25 August 2009

STAPI

7.28

7.29

7.30

7.31

b7

Protecting files in object directories
Variable: PRESERVE_FILES

* Defining this will protect files not cleaned by a component makefile from being deleted. For
example, running a test with -log output.log to capture the output to the DCU will create a file called
output.log in the objects directory (objs/ST20). Running “make clean” without this flag defined in
the environment will cause the output.log file to be deleted with the object directory. If this is
defined, the make system will not forcibly remove the object directory and the file, thus preserving
the log file (unless the makefile specifically deletes the file).

Performing Warning Checks using GCC

Variables: GCC_CHECK, GCC_CHECK _SA and GCC (99

Options: defined or undefined

Default: undefined

* When invoking make as “make GCC_CHECK=1" or “nmake GCC_CHECK_ SA=1", the make system
will invoke GCC to provide additional warning checks on the component source files. It does this by
compiling the source files with warning checking on.

* Remember to clean the appropriate source modules before and after invoking make in this
manner.

* A PC or Solaris build will require the prior installation of GCC for this option to work.

* (CC_C99 can be set additionally to perform error/warning checks using the C99 standards as a
reference.

Creating Object Dependencies

Variable: GCC_DEP

Options: defined or undefined

Default: undefined

* |nvoking make as “make GCC _DEP=1" will get the make system to produce an object dependency
file.

* This option should be invoked after cleaning the component so that a full list of dependencies are
generated.

* The dependency files are named “<sour ce fil e>. d”, for example “vi n_i ni t . d”. These will be
created in the directory where object files are placed. For example sr ¢/ obj s/ ST20 of a
component.

* The data should be extracted from these files and added to the nakef i | e (excluding the absolute
paths). After which, the dependency files should be removed as they are not cleaned by the make
system.

Performing LINT Analysis
Variable: LI NT_QUTPUT

Options: (provide a full output path to a file which will store the lint output information)

MAKE SYSTEM - 35

25 August 2009 Version 1.0.31

STAPI

Example: / usr/ hone/ | i nt out put . t xt
¢ |If this is not defined, lint processing will not happen.

¢ Set this variable to the full path of a file to store the lint processing output. All files processed will
be appended to this file.

* |f arelative file is used, this output will be distributed within the tree and may cause a problem in
cleaning as it may be placed in the object directory and not cleaned.

* OnaPC, the LINT_PATH should also be set to indicate where the lint-nt.exe is placed.
* On Solaris, flexi-lint is used. The command used is “flint” and this must be on the execution path.

* Be careful not to compile too many component libraries with this option enabled as it will create a
huge output file which will be unweildy.

The lint tool will only be invoked for files which require building, i.e. if the compiler will be invoked to
create the object file, the lint tool will be invoked first. This provides a method to selectively analyze C
source files. Conversely, it is important to clean a portion of the tree for which information is to be
gathered to make sure that all the files are analyzed.

7.32 Enabling 32 bit addressing support for supported ST40 devices
Variable: DVD_ADDRESSMODE
Options: (32, 29, undefined)
Default: undefined
* Set as 29 or leave it undefined for building in the default 29 bit addressing mode for devices such
as 71xx.
* Set as 32 for enabling and building with 32 bit addressing support.
7.33 Overriding the default -mboard link option (0S21-ST40)
Variable: MAPPED MBQOARD
Options: (provide the name of the required -mboard linktime procedure)
Example: MAPPED MBOARD=board_nb618 | m 0_0x05
* Set the name of the required -mboard linktime procedure. The 0S21_REG ON value automatically
gets suffixed.
The OS21_REGION value is by default 'se' for 32 bits mode and 'p1' for 29 bits mode which can be
overrided by setting OS21_REGION in the build environment.
7.34 Power Management support and STPOWER
Variable: STPONER _SUPPCORTED
Options: (1, unset)
Example: STPONER_SUPPORTED=1
* Setas 1, to enable power management support using STPOWER in drivers.
MAKE SYSTEM - 36 1572

Version 1.0.31 25 August 2009

STAPI

7.35 Using STAPIREF compatible code
Variable: STAPI REF_COWVPAT, STAPI REF_| NCLUDE COVPAT
Options: (1, unset)
Example: STAPI REF_COWPAT=1
or
STAPI REF_| NCLUDE_COMPAT=1

* Set STAPI REF_COWPAT as 1 to use stapiref compatible code. When unset stfae specific code is
used.

e Set STAPI REF_| NCLUDE COWPAT as 1 typically in driver environments to check stfae code
compilation when not having the same platform directory structure as in the stfae/sdk tree. Setting
this option will use the stapiref specific board & chip header files keeping rest of the code stfae
specific.

* The typical use cases for using these variables are:
* Stfae doesn’t set any of these two environment options to use stfae code.
¢ Sdk tree doesn't set any of these two options to use stfae code.
* Sdk tree sets STAPIREF_COMPAT=1 option to use stapiref code.
* Driver owners set STAPIREF_COMPAT=1 to use stapiref code.
Driver owners set STAPIREF_INCLUDE_COMPAT=1 to compile stfae code.

7.36 Building for Multicores/Multi Host SOCs (eg: STx7141)
Variable: DVD_CPU
Options: (ESTB, ECM, unset)
Example: DvD_CPU=ECM

* Set as ECMto build for ECM core. Set as ESTB to build for ESTB core. When unset, defaults to
ESTB for STx7141.

* Setting this variable, causes the ST_$(DVD_CPU) variable to be passed in CFLAGS during
compilation. eg: For STx7141, either of ST_ESTB or ST_ECM will be passed in the CFLAGS.

IS72 MAKE SYSTEM - 37

25 August 2009 Version 1.0.31

STAPI

8 Make System Variables

This section does not describe all the variables used in the make system, but those of importance to

makefiles.

CFG_PATH

CFLAGS

EXPORTS
HEADER | MPORTS

| MPORT_LI BS

| MPORTS
| NCLUDE_PATH

LI NK_PATH

LKFLAGS

OPTI ONAL_CFLAGS

SPARC_CFLAGS
SPARC_EXPCORTS
SPARC_| MPORTS
SPARC_LKFLAGS
SPARC_TARCETS
ST20_CFLAGS
ST20_EXPORTS

MAKE SYSTEM - 38

A space separated list of directories to search for *.cfg files.
These config files are required during an executable link.

Compiler flags used for both ST20 and ST40 compilations.
Care must be taken with this to ensure that flags can be
used in both architectures and for the selected toolset.

Another name for ST20_EXPORTS.

A space-separated list of components that are required for
their header files only (no objects are built in that directory).
For example, STSYS may be added to this list.

This variable is a list of libraries imported. It is created by
expanding ST20 | MPORTS or ST40_| MPORTS (depending
on the architecture selected) with the appropriate library
naming convention. An example may be (“staud. li b
stvid.lib stevt.!lib”foran ST20).

Another name for ST20_| MPORTS.

A space-separated variable that can be modified to add
directories to the include path. Remember to specify full
paths to the include directory.

A space-separated list of directories to be added to the
library include path.

Link flags used when linking both ST20 and ST40 executa-
bles. Care must be taken when using this to ensure that the
flags can be used when linking executables for both archi-
tectures.

This variable takes extra CFLAGS (usually C defines) which
a makefile can add to the CFLAGS, if required.

Similar to ST20_CFLAGS for SPARC build.
Similar to ST20_EXPORTS for SPARC build.
Similar to ST20_IMPORTS for SPARC build.
Similar to ST20_LKFLAGS for SPARC build.
Similar to ST20_TARGETS for SPARC build.
Compiler flags used for ST20 compilations.

A space-separated list of header files and ST20 libraries
exported by a component. Usually it will be something like
“staud. h staud.lib".

b7

Version 1.0.31 25 August 2009

STAPI

b7

ST20_1 MPORTS

ST20_LKFLAGS
ST20_TARGETS

ST40_CFLAGS
ST40_EXPORTS

ST40_1 MPORTS

ST40_LKFLAGS
ST40_TARGETS

ST200_CFLAGS
ST200_EXPORTS

ST200_I MPORTS

ST200_LKFLAGS
ST200_TARCETS

SUBDI RS

SUPPRESS_CLEAN_ALL

TARCETS

A space-separated list of components required to build for
the ST20. Even if the component is a library, a full set of
imports should be listed to support in-place includes and
in-place linking (see Section 7.1 and Section 7.2).

Link flags used when linking ST20 executables.

A space-separated list of libraries and executables to be
built for the ST20.

Compiler flags used for ST40 compilations.

Same as ST20_EXPORTS except that it list exports for an
ST40 build.

Same as ST20_| MPORTS except that it lists imports for an
ST40 build.

Link flags used when linking ST40 executables.

Same as ST20_TARGETS except that it lists targets for an
ST40 build.

Compiler flags used for ST200 compilations.

Same as ST20_EXPORTS except that it list exports for an
ST200 build.

Same as ST20_| MPORTS except that it lists imports for an
ST200 build.

Link flags used when linking ST200 executables.

Same as ST20_TARGETS except that it lists targets for an
ST200 build.

This is a space separated list of subdirectories to traverse to
build the named sub-libraries.

Defining this at the top of a makefile causes the make sys-
tem to suppress the clean_all target (see Section
7.27: Suppressing the clean_all target on page 34).

Another name for ST20 TARGETS.

MAKE SYSTEM - 39

25 August 2009

Version 1.0.31

STAPI

9 Make System Targets

This section provides reference for targets defined by the make system. This does not list all targets,
but only those of use to component makefiles or during a build.

Note The names and variables should be used as listed. Items written as $(NAME) are makefile variables
and should also be used as-is.

$(SUBDI R_CLEAN) This should be used as a dependency of the “clean” target
in a component makefile. This will ensure that sub-libraries
are also cleaned.

$(SUBDI R_LI BS) A list of sub-libraries built by the make system. This is only
set when SUBDI RS is assigned a value (see Section 6.9.2).
This should be listed as a dependency of an object or
library.

<t ar get > DEBUG_RUN Same as <target>_RUN, except that it runs the target in the
debugger. The naming convention is the same.

<target>_RUN This can be used as a “make” target. The <exe target>
should be replaced by the name of the target to run. For
example, if myapp.lku is the executable target, myapp_RUN
is the pseudo target to be used.

cl ean_all This can be used as a “make” target to clean the compo-
nent, all imported libraries and the DVD_EXPORTS directory
(if defined).

cl ean_i nports This can be used as a “make” target to clean the imported
libraries only.

clean_libs This can be used as a “make” target to clean the

DVD_EXPORTS directory (if defined).

debug Same as the run target, except it runs the target in the
debugger. This is not supported in version 1 makefiles.

run This can be used as a “make” target to run the first execut-
able target in the ST20_TARGETS or ST40_TARGETS or
ST200_TARGETS list. This is not supported in version 1
makefiles.

MAKE SYSTEM - 40 IS72

Version 1.0.31 25 August 2009

STAPI

10 Make System Macros

This section provides reference for the macros defined by the make system for use in component
makefiles.

b7

BUI LD_LI BRARY

COWPI LE_C

LI NK_EXECUTABLE

ST20EXE_TO_ST40EXE

ST20LI B_TO ST40LI B

ST200BJ_TO_ST400BJ

ST40EXE_TO_ST20EXE

ST40LI B_TO ST20LI B

ST400BJ_TO_ST200BJ

ST20EXE_TO_ST200EXE

ST20LI B_TO_ST200LI B

ST200BJ_TO_ST20008J

ST200EXE_TO_ST20EXE

ST200LI B_TO ST20LI B

ST2000BJ_TO_ST2008J

This macro defines the process used to create a library from
list of object files and other libraries.

This macro defines the process used to create an object file
from a source file (*. ¢). It should never be necessary to use
this macro because the make system defines automatic
rules for converting source files into object files.

This macro defines the process used to create an execut-
able from a set of object files and libraries. For ST20, this
macro requires the definition of an executable entry point, of
the form:

executable INIT := entry_point
See Figure 5 for an example.

A macro used to convert the ST20 executable naming con-
vention to the ST40 equivalent. See notes on Section 12.2.4
for use of this macro.

A macro used to convert the ST20 library naming conven-
tion to the ST40 equivalent.

A macro used to convert the ST20 object naming conven-
tion to the ST40 equivalent.

A macro used to convert the ST40 executable naming con-
vention to the ST20 equivalent.

A macro used to convert the ST40 library naming conven-
tion to the ST20 equivalent.

A macro used to convert the ST40 object naming conven-
tion to the ST20 equivalent.

A macro used to convert the ST20 executable naming con-
vention to the ST200 equivalent.

A macro used to convert the ST20 library naming conven-
tion to the ST200 equivalent.

A macro used to convert the ST20 object naming conven-
tion to the ST200 equivalent.

A macro used to convert the ST200 executable naming con-
vention to the ST20 equivalent.

A macro used to convert the ST200 library naming conven-
tion to the ST20 equivalent.

A macro used to convert the ST200 object naming conven-
tion to the ST20 equivalent.

MAKE SYSTEM - 41

25 August 2009

Version 1.0.31

STAPI

11 Common Makefile Errors

The following common errors should be avoided in new makefiles:
* Makefiles should be named “makef i | e” and not “Makefil e”.
* Makefiles should only build targets for files and directories that exist in that directory.

This allows makefiles to avoid using relative paths which often cause failures. It also makes it
easier to recognize which makefile applies to which set of files. This means that the following
would not be allowed:

OBJS := src/one.tco src/two.tco

The side-effect of this is that a few more intermediary makefiles are required (especially in
components that have a sr ¢ directory), but in the long-run it makes for makefiles which are easier
to understand.

* A makefile should not define “- g” flags to build debug versions of object files. This is achieved by
issuing a “make” like this:

make DEBUG=1

The make system will issue the appropriate command to build debug object files necessary for
running in the debugger.

To limit the debug objects to components of interest, make a non-debug version of an executable;
the components that should be debugged can be cleaned and the executable rebuilt with
“DEBUG=1".

¢ Library makefiles should not set a - DSTTBX_PRI NT as a CFLAG. Doing so would result in any
toolbox print commands being included in the library, which is not desirable. When a component
library is built, it should be non-debug (no “- g”) and not have any toolbox print commands
included.

* Within the development environment, symbolic file links should be avoided. This has traditionally
been used to make a header file (like the exported component header file) appear in the
component root directory.

As an example, STSUBT (at the time of writing) defines st subt . h inthe src/ api subdirectory of
st subt . This is linked to the st subt directory by means of a symbolic link. The preferred way of
doing this is to move the st subt . h to the root of st subt , and then each part of st subt can
define the following line in the makefile:

HEADER | MPORTS += st subt

This will add the st subt component directory to the include path, so the header file can be
located.

Symbolic file links can be used in “personalized” include directories which are tailored for a
particular release. The only reason that this is allowed is because the files that they refer to are
removed from their original location during the release process. For example, in the dbr ef
release, all STAPI header files (st aud. h, st vi d. h, etc) are used in the include directory and
removed from the component directory. This rule exists to ensure that header files are not
duplicated within the tree.

¢ Components should only import those STAPI components that they use. This is important because
it can be used as a way to ascertain the knock-on effect of library changes.

MAKE SYSTEM - 42 IS72

Version 1.0.31 25 August 2009

STAPI

* Components should always list all STAPI components that they use. Components commonly omit
“HEADER | MPORTS” like st sys or regular imports like st count and st t bx.

It is sometimes necessary to import components used by imported components. For example,
stt bx needs st uart and st pi o, because these are included in the st t bx header file. To test
whether an import list is complete, the DVD_| NCLUDE directory can be left unset within a
development tree - the make system will use header files from their component directory.

IS72 MAKE SYSTEM - 43

25 August 2009 Version 1.0.31

STAPI

12 Appendices

12.1 Glossary of Make System Terms

Term

Explanation

build

The process of invoking the “make” command to build the desired
object, library or executable.

build directory

Targets are being built for this directory.

build host

The machine that the build process is run on. This is invariably a
Solaris or Microsoft Windows machine with the appropriate build
tools installed.

compile flags

Extra parameters passed to a compile. (e.g. - DMY_DEFI NE=1)

component

A group of functions that form part of the STAPI. These functions
are focussed on manipulating a particular bit of hardware or
achieving a particular goal within the STAPI. (e.g. STPTI)

development tree or envi-
ronment

The internal ST development tree, maintained within a clearcase
VOB.

executable A file which can be loaded on the target platform and run. (e.g.
pt sapp. | ku)

exports Generally, header files and libraries produced by a component for
other components or executables to use. (e.g. STPIO exports
stpi o. handstpio.lib)

flags See compile flags or link flags.

HAL Hardware Abstraction Layer

imports One or more components which are required by a particular com-

ponent. (e.g. STUART imports STPIO and STCOMMON)

in-place include

Rather than using a central include directory, the STAPI header
files are extracted from their location in the STAPI tree. This should
only by used in a development environment (a VOB build). Failure
to set DVD_| NCLUDE will result in the make system using in-place
includes.

in-place libraries

When the make system does not export the libraries (when the
architecture-specific exports directory and the DVD_EXPORTS vari-
ables are not set), it will search for libraries within their component
directories.

in-place link

See in-place libraries.

include path

A path searched for a header file during a compile.

Table 1 : Glossary Of Make System Terms

1572
25 August 2009

MAKE SYSTEM - 44

Version 1.0.31

STAPI

b7

Term

Explanation

installed tree or installa-

tion environment

The structure and environment of an installed system - usually
associated with installation at a customer site.

library A single file which has been created by combining a one or more
object files. (e.g. stuart. i b)

library path A path searched for an object or library file during a link or while
creating a library.

link flags Extra parameters passed to a link (e.g. - M xyz. nap)

link path See library path.

multi-architecture

Applying to more than one hardware architecture. Within the con-
text of this document it refers to support for ST20 and ST40 builds.

object

An object file produced by compiling a source file. (e.g. denp. t co)

object directory

A new feature in the version 2 make system. For all makefiles that
support it, all targets built by the make system will be stored in an
objs/architecture directory within the build directory. (e.g. for an
ST20 platform, the object directory is obj s/ ST20)

path A list of directories to be searched for a particular file.

platform The target hardware for the build. (e.g. mb282b)

sub-library A library built as part of a component and is generally not exported,
but forms part of a higher level executable or library. Quite often
this sort of library is built within a sub-directory of a component.

targets An object, library, executable or operation that is required to be built

by the make system. (e.g. the default target for STEVT is
stevt.lib)

Table 1 : Glossary Of Make System Terms

MAKE SYSTEM - 45

25 August 2009

Version 1.0.31

STAPI

12.2 Makefile Templates

Makefile templates can be found in the t enpl at es subdirectory of the make VOB.

12.2.1 ST20 Component Makefile
Sanpl e ST20 makefile

DVD_MAKE_VERSI ON : = 2
i fdef | N OBJECT DIR

i ncl ude $(DVD_MAKE)/ generi c. mak

HEADER | MPORTS : = <conponents w th header files only>

| MPORTS : = <inported conponent s>
EXPORTS : = <exported |library and header>
TARGETS : = <exported library>

OBJS : = <objects in exported library>
i ncl ude $(DVD_MAKE)/ def r ul es. mak

<exported library> $(0BJS)
@(ECHO) Buil ding $@
$(BU LD _LI BRARY)

cl ean:
@(ECHO d eaning $(TARCETS)
-$(RV) $(0BJY)
-$(RM $(TARGETS)

Local header dependencies

el se

i ncl ude $(DVD_MAKE)/ bui | ddi r. mak
endi f

End of sanple ST20 nakefile
Template name: ST20_conponent _nakefil e

This is a makefile to build a simple library for an ST20. Use the ST20/ST40 makefile template when
both architectures are to be supported. Replace all sections of the makefile within angle braces (“<*
and “>"). Insert any local header dependencies after the header dependency comment.

MAKE SYSTEM - 46 IS72
Version 1.0.31 25 August 2009

STAPI

12.2.2 ST40 Component Makefile
Sanpl e ST40 nakefile

DVD_MAKE_VERSI ON : = 2
i fdef | N_OBJECT_DIR

i ncl ude $(DVD_MAKE)/ generi c. mak

HEADER | MPORTS : = <conponents with header files only>

ST40_| MPORTS : = <i nported conponent s>
ST40_EXPORTS : = <exported library and header>
ST40_TARCETS : = <exported library>

OBJS : = <objects in exported library>
i ncl ude $(DVD_MAKE) / def rul es. nmak
<exported library> $(0BIS)
@(ECHO Building $@
$(BUI LD_LI BRARY)
cl ean:
@(ECHO d eaning $(ST40_TARGETS)
-$(RM $(0BJS)
-$(RM) $(ST40_TARGETS)
Local header dependenci es
el se

i ncl ude $(DVD_MAKE) / bui | ddi r. mak

endi f

End of sample ST40 makefile
Template name: ST40_conponent _makefil e

This is a makefile to build a simple library for an ST40. Use the ST20/ST40 makefile template when
both architectures are to be supported. Replace all sections of the makefile within angle braces (“<*
and “>"). Insert any local header dependencies after the header dependency comment.

IS72 MAKE SYSTEM - 47

25 August 2009 Version 1.0.31

STAPI

12.2.3 ST200 Component Makefile

Sanmpl e ST200 mekefile

DVD_MAKE_VERSI ON : = 2
i fdef | N_OBJECT_DIR

i ncl ude $(DVD_MAKE)/ generi c. nak

HEADER | MPORTS : = <conponents with header files only>
ST200_I MPORTS : = <inported conponent s>

ST200_EXPORTS : = <exported library and header>
ST200_TARGETS : = <exported |ibrary>

OBJS : = <objects in exported library>
i ncl ude $(DVD_MAKE)/ defrul es. mak

<exported library>: $(0BIS)
@(ECHO Building $@
$(BUI LD_LI BRARY)

cl ean:
@(ECHO d eaning $(ST200_TARGETS)
-$(RM $(0BIS)
-$(RM $(ST200_TARCETS)

Local header dependenci es
el se
i ncl ude $(DVD_MAKE) / bui | ddi r. mak

endi f

End of sample ST200 makefile
Template name: ST200_conponent _nakefil e

This is a makefile to build a simple library for an ST200. Use the ST20/ST40/ST200 makefile template
when all the architectures are to be supported. Replace all sections of the makefile within angle
braces (“<* and “>"). Insert any local header dependencies after the header dependency comment.

MAKE SYSTEM - 48 IS72
Version 1.0.31 25 August 2009

STAPI

12.2.4 ST20/ST40/ST200 Component Makefile
Sanpl e ST20/ ST40/ ST200 nakefile

DVD_MAKE_VERSI ON : = 2
i fdef | N_OBJECT_DIR

i ncl ude $(DVD_MAKE)/ generi c. mak

HEADER | MPORTS : = <conponents with header files only>

ST20_| MPORTS : = <i nported conponent s>
ST20_EXPORTS : = <ST20 exported library and header>
ST20_TARCETS : = <ST20 exported library>

ST20_OBJS : = <ST20 objects in exported library>

ST40_| MPORTS : = <i nported conponent s>| $(ST20_| MPORTS)
ST40_EXPORTS : = <ST40 exported library and header>
ST40_TARCETS : = <ST40 exported library>

ST40_OBJS : = <ST40 obj ects>| $(cal | ST200BJ_TO ST400BJ, $(ST20_OBJS))

ST200_| MPORTS :
ST200_EXPORTS :
ST200_TARGETS :

<i nported conponent s>| $(ST20_I MPORTS)
<ST200 exported library and header>
<ST200 exported library>

ST200_OBJS : = <ST200 objects>| $(cal | ST200BJ_TO ST2000BJ, $(ST20_OBIS))

i ncl ude $(DVD_MAKE) / def rul es. mak
$(LI B_PREFI X) <exported |ibrary>$(LIB_SUFFI X): $($(ARCH TECTURE) _0BJS)
@(ECHO Building $@
$(BU LD_LI BRARY)
cl ean:
@(ECHO) C eani ng $($(ARCHI TECTURE) _TARCETS)
-$(RM $($(ARCH TECTURE) _0BJS)
-$(RM $($(ARCH TECTURE) _TARGETS)
Local header dependenci es
el se

i ncl ude $(DVD_MAKE) / bui | ddi r. mak

endi f

End of sample ST20/ST40/ST200 makefile

Template name: conbi ned_conponent _nakefil e

IS72 MAKE SYSTEM - 49

25 August 2009 Version 1.0.31

STAPI

This is a makefile to build a simple library for a ST20, ST40 and ST200. Replace all sections of the
makefile within angle braces (“<" and “>"). Insert any local header dependencies after the header
dependency comment. The following additional points also apply:

¢ HEADER | MPORTS are applied to ST20, ST40 and ST200 builds and are not specified separately.

* The ST40_I MPORTS and ST200_1 MPORTS may list different imports or may just assign
ST20_| MPORTS to this variable if the import lists are identical.

* ST40_EXPORTS and ST40_TARGETS or ST200_EXPORTS and ST200_TARGETS could be
restated to appropriately convert ST20_EXPORTS or ST20_TARGETS, respectively. Each could be
stated in the following way:

ST40_EXPORTS : = $(cal |l ST20LI B_TO ST40LI B, $(ST20_EXPORTS))
ST40_TARGETS : = $(cal | ST20LI B_TO ST40LI B, $(ST20_TARCETS))

ST200_EXPORTS :
ST200_TARGETS :

$(call ST20LI B_TO ST200LI B, $(ST20_EXPORTS))
$(call ST20LI B_TO ST200LI B, $(ST20_TARGETS))

These will convert library naming from ST20 to ST40/ST200, leaving the header files listed in the
exports unchanged. If the targets include any object files too, the following line should be
appended:

ST40_TARGETS : = $(cal | ST20EXE_TO ST40EXE, $(ST40_TARGETS))
ST200_TARGETS : = $(cal | ST20EXE_TO ST200EXE, $(ST200_TARGETS))

* The ST40_0OBJSand ST200_0OBJS can list the component object files (e.g. “one.o two.o three.0”).
If the list of files is identical (except for the change in object extension), the provided macro call can
be used.

* The “clean” target is complex because it needs to support ST20, ST40 and ST200. If the
readability is deemed to be compromised, the target can be replaced with the following:

cl ean:
ifeq “$(ARCH TECTURE) " *“ ST20"
@cho d eani ng $(ST20_TARGETS)
-$(RVM $(ST20_0BJS)
-$(RV) $(ST20_TARGETS)
el se
i feq ““$(ARCH TECTURE)” “ST40"
@cho d eani ng $(ST40_TARCETS)
-$(RVM) $(ST40_0BJIS)
-$(RM $(ST40_TARGETS)
el se
@cho d eani ng $(ST200_TARCETS)
-$(RM $(ST200_0BJS)
-$(RM) $(ST200_TARGETS)
endi f

endi f

While only the ST20, ST40 and ST200 architectures are supported, this construct can be used.
Once new architectures are supported, further “ifeq” constructs should be added.

MAKE SYSTEM - 50 IS72

Version 1.0.31 25 August 2009

STAPI

12.2.5 ST20 Test Directory Makefile
Sanpl e ST20 nakefile

DVD_MAKE_VERSI ON : = 2
i fdef | N_OBJECT_DIR

i ncl ude $(DVD_MAKE)/ generi c. mak

HEADER | MPORTS : = <conponents with header files only>

| MPORTS : = <inported conponent s>

EXPORTS := <likely to be blank - nothing exported>
TARGETS := <list of .lku files to build>

<target> OBJS := <objects in particular .|lku target>

i ncl ude $(DVD_MAKE) / def rul es. nmak

<target basenane> INIT := <entry point>
<target .lku>: $(<target>_0BJIS) $(| MPORT_LI BS)
@(ECHO Linking $@
$(LI NK_EXECUTABLE)

cl ean:
@(ECHO d eani ng $(TARGETS)
-$(RM $(<target> OBIS)

“$(RM $(TARGETS)
Local header dependenci es
el se
i ncl ude $(DVD_MAKE) / bui | ddi r. mak
endi f

End of sanple ST20 nmakefile
Template name: ST20_tests_makefile

This is a makefile to build one or more executables for an ST20. Use the ST20/ST40 makefile template
when both architectures are to be supported. Replace all sections of the makefile within angle braces
(“<"and “>"). Insert any local header dependencies after the header dependency comment.

The ellipses associated with the target OBJS variable, target rules and “cl ean” rule indicate that the
items are repeated for each of the . | ku targets listed in the TARGETS line.

For each target rule, an associated <t ar get basenane>_| NI T variable must be defined which
provides the L1 NK_EXECUTABLE macro with the executable entry point. For example, a target of
myapp. | ku could have the following definition:

nyapp_| NI T : = board_init

IS72 MAKE SYSTEM - 51

25 August 2009 Version 1.0.31

12.2.6 ST40 Test Directory Makefile
Sanpl e ST40 nakefile

DVD_MAKE_VERSI ON : = 2
i fdef | N_OBJECT_DIR

i ncl ude $(DVD_MAKE)/ generi c. mak

HEADER | MPORTS : = <conponents with header files only>

ST40_| MPORTS : = <i nported conponent s>

ST40_EXPORTS : = <likely to be blank - nothing exported>
ST40_TARCETS := <list of .exe files to build>

<target> OBJS := <objects in particular .exe target>

i ncl ude $(DVD_MAKE) / def rul es. nmak

<target .exe> $(<target>_0BIS) $(| MPORT_LI BS)
@(ECHO Linking $@
$(LI NK_EXECUTABLE)

cl ean:
@(ECHO d eaning $(ST40_TARGETS)
-$(RM $(<target> OBIS)

C$(RM) $(ST40_TARGETS)
Local header dependenci es
el se
i ncl ude $(DVD_MAKE) / bui | ddi r. mak
endi f

End of sanple ST40 nakefile
Template name: ST40_tests_makefile

This is a makefile to build one or more executables for an ST40. Use the ST20/ST40 makefile template
when both architectures are to be supported. Replace all sections of the makefile within angle braces
(“<"and “>"). Insert any local header dependencies after the header dependency comment.

The ellipses associated with the target OBJS variable, target rules and “cl ean” rule indicate that the
items are repeated for each of the . exe targets listed in the TARGETS line.

For ST40, a <t ar get basenane>_I| NI T variable is not required (unlike for the ST20 shown in the
previous template).

12.2.7 ST200 Test Directory Makefile
Sanpl e ST200 nekefile

DVD_MAKE_VERSI ON : = 2
i fdef | N_OBJECT_DIR

i ncl ude $(DVD_MAKE)/ generi c. mak

HEADER | MPORTS : = <conponents with header files only>
ST200 | MPORTS : = <inported conponent s>

ST200_EXPORTS := <likely to be blank - nothing exported>
ST200_TARGETS := <list of .exe files to build>

<objects in particular .exe target>

<target>_0BJS :

i ncl ude $(DVD_MAKE) / def rul es. nmak

<target.exe> $(<target>_0BIS) $(| MPORT_LI BS)
@(ECHO Linking $@
$(LI NK_EXECUTABLE)

cl ean:
@(ECHO d eaning $(ST200_TARGETS)
-$(RM $(<target> OBIS)

“$(RM $(ST200_TARGETS)
Local header dependenci es
el se
i ncl ude $(DVD_MAKE) / bui | ddi r. mak
endi f

End of sanple ST200 makefile
Template name: ST200_t ests_makefil e

This is a makefile to build one or more executables for an ST200. Use the combined makefile template
when both architectures are to be supported. Replace all sections of the makefile within angle braces
(“<"and “>"). Insert any local header dependencies after the header dependency comment.

The ellipses associated with the target OBJS variable, target rules and “cl ean” rule indicate that the
items are repeated for each of the . exe targets listed in the TARGETS line.

For ST200, a <t ar get basenane>_I Nl T variable is not required (unlike for the ST20 shown in the
earlier templates).

STAPI

12.2.8 ST20/ST40/ST200 Test Directory Makefile
Sanpl e ST20/ ST40/ ST200 nakefile

DVD_MAKE_VERSI ON : = 2
i fdef | N_OBJECT_DIR

i ncl ude $(DVD_MAKE)/ generi c. mak

HEADER | MPORTS : = <conponents with header files only>

ST20_| MPORTS : = <ST20 i nported conponent s>

ST20_EXPORTS : = <likely to be blank - nothing exported>
ST20_TARCETS := <list of .lku files to build>

ST40_| MPORTS : = <ST40 i nported conponent s>| $(ST20_| MPORTS)
ST40_EXPORTS : = <likely to be blank - nothing exported>
ST40_TARCETS := <list of .exe files to build>

ST200_| MPORTS :
ST200_EXPORTS :
ST200_TARGETS :

<ST200 i nported conponent s>| $(ST20_| MPORTS)
<likely to be blank - nothing exported>
<list of .exe files to build>

<target> ST20 OBJS := <objects in particular .Iku target>
<target> ST40 OBJS := <objects in particular .exe target>
<target> ST200_OBJS := <objects in particular .exe target>

i ncl ude $(DVD_MAKE) / def rul es. mak

<.l ku target basenane> INIT := <entry point>

<t ar get >$(EXE_SUFFI X): $($(ARCHI TECTURE) _OBJS) $(| MPORT_LI BS)
@(ECHO Linking $@
$(LI NK_EXECUTABLE)

cl ean:
@(ECHO) d eani ng $($(ARCH TECTURE) TARGETS)
-$(RM $(<target>_$(ARCH TECTURE) _OBJS)
-$(RM) $($(ARCH TECTURE) _TARGETS)

Local header dependenci es

el se

i ncl ude $(DVD_MAKE) / bui | ddi r. mak
endi f

End of sanple ST20/ ST40/ ST200 nakefil e
Template name: conbi ned_t ests_makefil e

This is a makefile to build one or more executables for a ST20/ST40/ST200. Use this ST20/ST40/
ST200 makefile template when both architectures are to be supported. Replace all sections of the
makefile within angle braces (“<" and “>"). Insert any local header dependencies after the header

dependency comment. The following additional points also apply:

MAKE SYSTEM - 54 IS72
Version 1.0.31 25 August 2009

STAPI

* HEADER_| MPORTS are applied to ST20, ST40 and ST200 builds and are not specified separately.

* The ST40_| MPORTS or ST40_| MPORTS may list different imports or may just assign
ST20_1 MPORTS to this variable if the import lists are identical.

e ST40_EXPORTS and ST40_TARGETS or ST200_EXPORTS and ST200_TARGETS could be
restated to appropriately convert ST20_EXPORTS or ST20_TARGETS, respectively. Each could be
stated in the following way:

ST40_EXPORTS : = $(cal | ST20EXE_TO ST40EXE, $(ST20_EXPORTS))
ST40_TARGETS : = $(cal | ST20EXE_TO ST40EXE, $(ST20_TARGETS))

ST200_EXPORTS :
ST200_TARGETS :

$(cal | ST20EXE_TO ST200EXE, $(ST200 EXPORTS))
$(cal | ST20EXE_TO ST200EXE, $(ST200_TARGETS))

This will convert executable naming from ST20 to ST40/ST200, leaving the header files listed in
the exports unchanged.

* An appropriately named _OBJS variable is created (depicted generically) for each of the target
executables and for the ST20, ST40 and ST200. Only one generalised example is given for ST20,
ST40 and ST200, but it is implied that this be repeated for all target executables.

* The<target> ST40_OBJSor<target> ST200_0BJS can list the component object files (e.g.
“one.o two.o three.o”). If the list of files is identical (except for the change in object extension), the
following macro call can be used:

$(cal | ST200BJ_TO ST400BJ, $(<t ar get > ST20_OBJS))
$(cal | ST200BJ_TO ST2000BJ, $(<t ar get > ST20_OBJS))

* Quite often in a test directory, a single object file is linked with one or more libraries to produce an
new test application. In this case it is possible to replace the definition of the _0OBJS variables and
executable targets, with the following lines:

%Il ku: %tco $(1 MPORT_LI BS)
$(LI NK_EXECUTABLE)

% exe: %o $(| MPORT_LI BS)
$(LI NK_EXECUTABLE)

Iftest 1.l kuandt est 1. exe were the targets for an ST20 and ST40/ST200, the make system
will try and locate t est 1. t co and t est 1. o, respectively. These would then be created by
compilingtestl.c.

¢ Entry points must be defined for each of the .Iku targets. See Section 12.2.5 for more information.

* The “clean” target is complex because it needs to support ST20, ST40 and ST200. See comment
in Section 12.2.4 for more information.

IS72 MAKE SYSTEM - 55

25 August 2009 Version 1.0.31

STAPI

12.2.9 Makefile for Component with Src Directory

This makefile is recommended for components with their own sr ¢ directory. It is a basic requirement
of a component that it export an appropriately named header file and library in the root of the
component directory. The following recommendations are made (for direction purposes, an ST20
target is assumed):

* The header file be placed in the root of the component directory (for STAUD, this means st aud. h
isin dvdbr - prj - st aud).

* The sub-directories use the library without duplication within the tree - this can be achieved by
adding staud to the HEADER | MPORTS line of the subdirectory makefiles.

* Thelibrary (e.g. st aud. | i b) be built in the src directory. This means that the st aud. | i b be
listed in TARGETS, but not in EXPORTS in the sr ¢ directory makefile. See Section 12.2.10 for the
makefile template used in this case.

The following makefile will then be the template for the root of the component directory (above the sr c
directory). The makefile will support ST20, ST40 and ST200 builds.

Sanpl e ST20/ ST40/ ST200 nakefile

DVD_MAKE_VERSI ON : = 2
i fdef | N_OBJECT_DIR

i ncl ude $(DVD_MAKE)/ generi c. mak

COVPONENT_NAME : = <conponent nane>

ST20_TARGETS : = $(COVPONENT_NAME) . | i b

ST20_EXPORTS : = $(COVPONENT_NAME) . h $(COVPONENT _NAME) . | i b
ST40_TARGETS : = $(cal | ST20LI B_TO ST40LI B, $(ST20_TARGETS))
ST40_EXPORTS : = $(cal | ST20LI B_TO ST40LI B, $(ST20_EXPORTS))

ST200_TARGETS :
ST200_EXPORTS :

$(cal | ST20LI B_TO ST200LI B, $(ST20_TARGETS))
$(cal | ST20LI B_TO ST200LI B, $(ST20_EXPORTS))

i ncl ude $(DVD_MAKE) / def rul es. mak
FULLDIR : = $(DVD_BU LD _DI R)/ src/ obj s/ $(OBJECT_DI RECTORY)

$($(ARCH TECTURE) _TARGETS): $(FULLDI R)/ $($(ARCHI TECTURE) _TARGETS)
$(CP) $(subst $(BAD_SLASH), $(GOOD_SLASH), $<) $@> $(NULL)

$(FULLDI R) / $($(ARCHI TECTURE) _TARCETS): FORCE
@(ECHO Entering SRC directory
$(MAKE) -C $(DVD BU LD DIR)/src

clean: subdir_clean
@(ECHO) C eani ng $($(ARCHI TECTURE) _TARCETS)
$(RVM $($(ARCH TECTURE) _TARCETS)

subdi r _cl ean:
$(MAKE) -C $(DVD BU LD DIR)/src clean

MAKE SYSTEM - 56 IS72

Version 1.0.31 25 August 2009

STAPI

FORCE:

el se

i ncl ude $(DVD_MAKE)/ bui | ddi r. mak

endi f

End of sanple ST20/ ST40/ ST200 mekefil e

Template name: conbi ned_t opl evel _nakefil e

Extra notes about this template:

¢ Only the value of COMPONENT _NAME needs to be set. So for STAUD, the line becomes:
COVPONENT_NAME : = st aud

* No other changes should be required.

* The library will be copied from the src directory to the root of the component directory. The
definition of CP in the toolkit usually preserves date and time stamps in the copy.

IS72 MAKE SYSTEM - 57

25 August 2009 Version 1.0.31

STAPI

12.2.10 Component Src Directory Makefile

This template is related to the previous template. Whereas that makefile is suggested for the directory
above the sr ¢ directory, this template is used in the sr ¢ directory when the directory contains a
number of sub-libraries to be built in subdirectories.

Sanmpl e ST20/ ST40/ ST200 makefile

DVD_MAKE_VERSI ON : = 2
i fdef | N_OBJECT_DIR

i ncl ude $(DVD_MAKE)/ generi c. nak
ST20_TARCETS : = <ST20 target library>

ST40_TARCETS : = <ST40 target library>
ST200_TARGETS : = <ST200 target library>

SUBDIRS := <list of subdirs to build>
i ncl ude $(DVD_MAKE)/ defrul es. mak

$(LI B_PREFI X) <target |ibrary>$(LI B_SUFFI X): $($(ARCH TECTURE) OBJS)
@(ECHO Buil ding $@
$(BUI LD_LI BRARY)

cl ean: $(SUBDI R_CLEAN)
@(ECHO) d eani ng $($(ARCHI TECTURE) _TARGETS)
-$(RV) $($(ARCH TECTURE) TARGETS)

Local header dependenci es

el se

i ncl ude $(DVD_MAKE) / bui | ddi r . mak
endi f

End of sanple ST20/ ST40/ ST200 nakefil e
Template name: conbi ned_srcdi r_nakefil e
The following additional points apply:

* Replace all sections of the makefile within angle braces (“<* and “>").

¢ |[f there are a number of object files to be built in the sr ¢ directory, they can be listed in variables
named ST20_0OBJS, ST40_0OBJS and ST40_OBJS. Those variables are then added as
dependencies of the ST20, ST40 and ST200 libraries respectively. These must also be added to
the clean target.

* A common feature in this type of makefile is to add to SUBDI RS based on configuration options.
See Section 6.12.4.

* The SUBDIRS can also vary based on the ARCHI TECTURE. The following lines show an example
of that:

i feq “$(ARCH TECTURE)” “ST20”

MAKE SYSTEM - 58 IS72

Version 1.0.31 25 August 2009

STAPI

SUBDI RS += one two
endi f

IS72 MAKE SYSTEM - 59

25 August 2009 Version 1.0.31

STAPI

12.2.11 Component level LINUX Makefile (linux.mak)

This makefile is recommended for components with linux directory. It is a basic requirement of a
component that it is to be compiled on DVD_OS = LINUX.

The following makefile will then be the template for the root of the component directory
Sample linux.mak makefile present in top directory of component

DVD_MAKE_VERSI ON : = 2
i ncl ude $(DVD_MAKE)/ generi c. mak

. PHONY: build_all _I|inux

LI NUX TARGETS := build_ all _Iinux

LI NUX_EXPORTS : = <exported library, .ko and header>

i ncl ude $(DVD_MAKE) / def rul es. mak

LI NUX_EXPORTS_W THOUT _HEADERS : = $(filter-out % h, $(LI NUX_EXPORTS))

build all _Iinux:

@(ECHO Building all LINUX targets

@(MAKE) -C $(DVD BUI LD DIR)/Ii nux

@(CP) $(addprefix $(DvD BU LD DI R)/Iinux/objs/$(OBIECT_DI RECTORY)/
, $(LI NUX_EXPORTS_W THOUT _HEADERS))

cl ean:
@(ECHO) C eaning $(DVD BUI LD DI R)
@(RVM $(LI NUX_EXPORTS W THOUT HEADERS)
@(MAKE) -C $(DVvD BU LD DIR)/I1inux clean

Template name: STLI NUX _conponent nakefil e

MAKE SYSTEM - 60 IS72

Version 1.0.31 25 August 2009

STAPI

12.2.12 Makefile present in linux folder

This makefile is recommended for components with linux directory. It is a basic requirement of a
component that it is to be compiled on DVD_OS = LINUX.

The following makefile will then be the template for the linux folder of the component directory
Sample makefile

DVD_MAKE_VERSI ON : = 2
i fdef | N_OBJECT_DIR

i ncl ude $(DVD_MAKE)/ generi c. mak
LI NUX TARGETS : = <exported library and .ko >
i ncl ude $(DVD_MAKE) / def rul es. nmak

For building kernel objects
$(filter % ko, $(LI NUX_TARCETS)): FORCE
@(ECHO) Building $@
-$(CP) $(DVD_MAKE)/ Modul es. synvers $(DVD BU LD DI R)/ $(basename $@/ .
@(MAKE) -C $(DvD_BU LD DI R)/ $(basenane $@
@(CP) $(DVD BU LD DI R/ $(basenane $@/3$@.
-$(RENAVE) $(DVD BUI LD DI R)/ $(basenane $@/ Mdul es. symvers $(DVD_MAKE) /

For building libraries
$(filter 1ib%(LIB_SUFFI X), $(LI NUX_TARGETS)): FORCE

@(ECHO Building $@

@(MAKE) -C $(DVD BU LD DI R)/ $(patsubst |ib%(LIB_SUFFI X), % ioctl, $Q@
$@

@(CP) $(DVD BU LD DI R)/$(patsubst 1ib%(LIB_SUFFIX), %ioctl,$@/3$@.

FORCE:

cl ean:
@(ECHO) C eaning $(DVD BUI LD DI R)
@(MAKE) -C $(DvD BU LD DI R)/ <conponent >_core cl ean
@(MAKE) -C $(DvD_BU LD DI R)/ <conponent>_i oct| clean

Template name: STLI NUX | i nux_f ol der _nakefil e

IS72 MAKE SYSTEM - 61

25 August 2009 Version 1.0.31

STAPI

12.2.13 Makefile present in linux/<component>_ioctl folder
This makefile is recommended for components with linux directory.

The following makefile is the template for the linux/<component>_ioctl folder of the component
directory

Sample makefile

HEADER | MPORTS += <conponents with header files only>

i ncl ude $(DVD_MAKE) / kbui I d. mak

<conponent> ioctl-objs := <objects in exported library>
EXTRA_CFLAGS += $(DVD_| NCLUDE_PATH)

EXTRA_CFLAGS += $(KBUI LD_CFLAGS)
EXTRA_CFLAGS += $(DVD_LI NUX_CFLAGS)

i fneq ($(KERNELRELEASE),)

Kernel nakefile

el se

ifeq "$(KDIR)" ""

$(error The environent variable KD R nust be set)
endi f

External nekefile
PWD := $(shell pwd)

all: default <exported library>
def aul t:

$(MAKE) -C $(KDIR) M=$(PWD) nodul es
<exported library>: <conponent> ioctl lib.o

$(BUI LD_LI BRARY)

Template name: STLI NUX i oct| _nakefile

MAKE SYSTEM - 62 IS72

Version 1.0.31 25 August 2009

STAPI

12.2.14 Makefile present in linux/<component>_core folder

b7

This makefile is recommended for components with linux directory.

The following makefile is the template for the linux/<component>_core folder of the component
directory

Sample makefile

HEADER | MPORTS += <conponents with header files only>

i ncl ude $(DVD_MAKE) / kbui I d. mak

<COVPONENT>_OBJS : = <objects in src fol der>

obj -m : = <conponent> core.o

<conponent > core-objs := <objects in exported |ibrary>\

$(<COVPONENT>_OBJS)

EXTRA_CFLAGS += $(DVD_| NCLUDE_PATH)
EXTRA_CFLAGS += $(KBUI LD_CFLAGS)

The followi ng checks to see if we have been invoked in the kbuild

(KERNELRELEASE wi || be defined). If not we have the neans of | aunching
the KBU LD (all and default targets).

i fneq ($(KERNELRELEASE),)

Kernel nakefile

el se

ifeq "$(KDIR)" ""

$(error The environent variable KD R nust be set)

endi f

PW : = $(shell pwd)

all: default

def aul t:
$(MAKE) -C $(KDIR) M=$(PWD) nodul es

Renove the object files, the .<object> cnd file and use KBU LD to renove
t he rest
cl ean:

$(RVM $$(<COVPONENT>_0OBJS)

$(RM $(foreach FILE, $(<COVMPONENT>_0BJS), $(dir $(FILE)). $(notdir
$(FILE)). cnd)

$(MAKE) -C $(KDIR) M=$(PWD) cl ean

endi f

Template name: STLI NUX core_nakefil e

MAKE SYSTEM - 63

25 August 2009 Version 1.0.31

STAPI

MAKE SYSTEM - 64 IS72

Version 1.0.31 25 August 2009

STAPI

IS72 MAKE SYSTEM - 65

25 August 2009 Version 1.0.31

STAPI

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or
systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
All other trademarks are the property of their respective companies.
© 2008 STMicroelectronics - All Rights Reserved
STMicroelectronics Group of Companies
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan

Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

www.st.com

MAKE SYSTEM - 66 IS72

Version 1.0.31 25 August 2009

	STAPI
	1 Change History
	2 Introduction
	3 Structure
	4 Make System Basics
	5 Structure of a Simple ST20 Makefile
	5.1 Component Variables
	5.2 Component Rules
	5.3 Object Directory Support
	5.4 Make System Support
	5.5 Using the Makefile

	6 Doing More
	6.1 Building Imported Library Components
	6.2 Adding Compile Flags
	6.3 Adding to the Include Path
	6.4 Adding Link Flags
	6.5 Adding to the Library Path
	6.6 Adding a Library Target
	6.7 Adding an Executable Target
	6.8 Uploading and Running an Executable
	6.9 Building Sub-Libraries
	6.10 Overriding Configuration (*.cfg) Files
	6.11 Adding Optional System CFLAGS in a Makefile
	6.12 Multi-Chip Support
	6.13 Adding Multi-Architecture Support
	6.14 Setting an OS21 Executable Region
	6.15 Setting the OS21 Runtime Library
	6.16 Passing Arguments When Running
	6.17 SPARC Toolset Support
	6.18 Creating a New “Version 2” Makefile
	6.19 Converting an Existing Makefile to “Version 2”
	6.20 LINUX OS Support

	7 Build Options
	7.1 Basic Options
	7.2 Exporting STAPI Libraries
	7.3 Exporting STAPI Headers
	7.4 Future of DVD_FRONTEND and DVD_BACKEND
	7.5 Building for ST20, ST40 and ST200
	7.6 Overriding Config Files
	7.7 Specifying an Alternate Main Config File
	7.8 Specifying an Optional Config File
	7.9 Specifying the Service
	7.10 Path to targets.cfg
	7.11 Setting the Build Platform
	7.12 Setting the Configure Platform
	7.13 Setting the Build OS
	7.14 Setting the Build Host
	7.15 Setting the Linker Procedure
	7.16 Building Dependencies
	7.17 Changing Toolsets
	7.18 Setting the Make Limit
	7.19 Setting the Transport
	7.20 Doing a Debug Build
	7.21 Changing the compilation optimization
	7.22 Building a Unified Memory Object
	7.23 Creating a Specialized Build Variant
	7.24 Building for Codetest
	7.25 Generating a map file
	7.26 Use OS20 debug Kernel
	7.27 Suppressing the clean_all target
	7.28 Protecting files in object directories
	7.29 Performing Warning Checks using GCC
	7.30 Creating Object Dependencies
	7.31 Performing LINT Analysis
	7.32 Enabling 32 bit addressing support for supported ST40 devices
	7.33 Overriding the default -mboard link option (OS21-ST40)
	7.34 Power Management support and STPOWER
	7.35 Using STAPIREF compatible code
	7.36 Building for Multicores/Multi Host SOCs (eg: STx7141)

	8 Make System Variables
	9 Make System Targets
	10 Make System Macros
	11 Common Makefile Errors
	12 Appendices
	12.1 Glossary of Make System Terms
	12.2 Makefile Templates

