‘" 8182595 Rev C CONTROLLED DOCUMENT 28-FEB-2011 Page: A

®

MULTICOM 4 USER MANUAL

TECH-MIG (TECHLIT MIG TO DMS@ST)

DOCUMENT HISTORY

Version Release Date Change Designator
C 28-FEB-2011 PROCESS/PRODUCT CHANGE
Updated to address clearquest issues and support the R4.0.4. Approval required
by 28.01.11.

NOTICE: This document may have been revised since it was printed. Check Document Control System for latest version before using or copying.
©Copyright STMicroelectronics. Unauthorized reproduction and communication strictly prohibited

‘" 8182595 Rev C CONTROLLED DOCUMENT 28-FEB-2011 Page: B

®

DOCUMENT APPROVAL

Group Name Date
STS GROUP RUSSELL WAYMAN 28-FEB-2011
STS GROUP DOUG TURNER 08-FEB-2011
STS GROUP SIMON ELLIOTT 25-JAN-2011
DVD DOCUMENTATION,BR JANET TEGGIN 27-JAN-2011
DVD DOCUMENTATION,BR SUZANNE EVANS 27-JAN-2011
BRISTOL, UK MOSIN MAHMADHANIF 08-FEB-2011
GRENOBLE, FRANCE LAURENCE MEY 25-JAN-2011
MCDT MARKETING RAY MOGFORD 25-JAN-2011

NOTICE: This document may have been revised since it was printed. Check Document Control System for latest version before using or copying.
©Copyright STMicroelectronics. Unauthorized reproduction and communication strictly prohibited

‘" 8182595 Rev C CONTROLLED DOCUMENT 28-FEB-2011 Page: C

®

REFERENCED DOCUMENTS

Document Id Document Type IAIternate Number| Document Title
No References

NOTICE: This document may have been revised since it was printed. Check Document Control System for latest version before using or copying.
©Copyright STMicroelectronics. Unauthorized reproduction and communication strictly prohibited

‘" 8182595 Rev C
&

CONTROLLED DOCUMENT

28-FEB-2011

Page: D

CUSTOM ATTRIBUTES

Alternate Number
Dispatcher
Working Vault
Status

Cycle type
Change designator
Alternate name
Application scope

Application segment

Category

Class family
Classification
Company

Iso definition
Key process
Language

Macro package
Other RPN
P&L/BU

Package family
Packing

Print Diff
Product class
Product pnl
Product subclass
RPN

Replication sites
end application
package

product division
product group
publishing scope
Revalidation Date

MEYL

GNB

ACTIVE

ACTIVE

PROCESS/PRODUCT CHANGE

N/A
N/A
User manual
N/A
N/A

Product Development

N/A

N/A

N/A

N/A (NOT APPLICABLE)
N/A

NO

N/A

Set-Top-Box

N/A

MULTICOM-4

N/A
N/A
HVD
HED
Public

NOTICE: This document may have been revised since it was printed. Check Document Control System for latest version before using or copying.

©Copyright STMicroelectronics. Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 1/218

STMicroelectronics

Multicom 4

User manual

8182595 Rev C

January 2011

S74

www.st.com

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 2/218

BLANK

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 3/218

KYI User manual

Multicom 4

Overview

This document describes Multicom 4, which provides an inter-processor communication
system for ST40 and ST200 processors on STMicroelectonics SoCs. Multicom combines
the multi-media engine APl (MME) and the inter-core system (ICS).

MME provides an API for controlling media transformers, for example, an MPEG2 decoder;
which resides on either the local processor or a remote processor.

ICS is a run-time system that provides program execution management and
communications between all the CPUs on an ST SoC. ICS replaces the EMBX layer® in
previous versions of Multicom, with a simpler approach to communication, and with the
addition of facilities for loading, starting, monitoring and recovering from errors in other
CPUs in the SoC.

Figure 1. Multicom 4 overview

Host processor (Optional)
Companion processors
Application
Drivers l
r—— - - - - - - — — — 1
I | Video Audio |
| driver driver |
Lo |
ER=R==R=mR=i =Rl =R R R = == =Rl R R R e e R = e Ry
I —‘7 Multicom 4 I
| |
| MME MME I
| Inter-processor I
communication
| cs ———=_ | IcS 1
| |
L__%kx___________%_\x__J
Transformer Transformer Transformer Transformer

a. Extended mailbox communications system (EMBX) - a low-level communications API used to manage
communication between CPUs; implemented in the Multicom 3.x product.

January 2011 8182595 Rev C 1/216

www.st.com

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

http://www.st.com

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 4/218

Contents Multicom 4
Contents

L0 Y= 1

Prefaceo i i e e s aaaa e e e 6

Document identification and control 6

Terminology e 6

Conventions used inthisguide. 6

Acknowledgements. 7

1 Building Multicomt i i i iaaaannes 8

1.1 OVEIVIEW .o e e 8

1.1.1 Code organizationt 8

1.1.2 Compiler recommendations i 9

1.2 Building the librarycode 9

1.3 Buildingthetestcode 10

1.4 Compiling and linking against the Multicom 4 libraries 10

1.5 Building dynamic modules for use with Multicom4 11

1.6 Debugging support 11

1.6.1 Debug logging 12

1.7 Running the testsunder OS21 i 12

1.8 Running the testsunder Linux 12

1.9 BSP configuration 13

2 Usingthe MME APl it i it nnnnnnnnnns 14

2.1 OVEIVIEBW . . 14

21.1 Transformers and transformerinstances 14

21.2 Multi-hosting support 15

21.3 Commandsandevents 17

21.4 Callbacks e 17

2.1.5 Duetime e 17

2.1.6 Transformer priorities e 18

217 Structure size 19

2.2 Summary of MME facilities 19

2.3 Initialization e 20

2/216 8182595 Rev C ﬁ

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C

CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

Multicom 4 Contents
2.3.1 Initializing MME 20

2.3.2 Registering transformers 20

2.3.3 Example 21

2.4 Managing transformer lifetimes 21
2.4.1 Querying the capabilities of a transformer 22

2.5 Buffer and cache management 22
251 Allocatingdatabuffers e 23

25.2 Manually managingdata buffers 23

25.3 Subdividingadatabuffer e 24

254 Data buffers in Linuxusermode 24

255 Cache management i, 25

2.6 Application and transformer specificdata 26
2.7 ISSUINg COMMANASot 26
271 Abortingcommands i i 28

2.8 Fault detection and recovery 28
2.9 Typesofcommands e 29
2941 Transformingdata 29

29.2 Providing supplementary buffers L. 29

2.9.3 Altering global parameters 29

2.10 Common types of transformer 30
2.10.1 Frame-based operation i 30

2.10.2 Stream-based and hybrid operation 30

211 Linkingandloading 31
2. 111 O821 i e e 31

2.11.2 LiNUX .o e 31

2.11.3 Dynamicmodule linking 32

3 Writing an MME transformer it 33
3.1 OVeIVIBW . o 33
3.2 Managing transformer lifetimes 34
3.2.1 Instantiation 34

3.2.2 Contextdata i 34

3.2.3 Termination e 35

3.3 Querying the capabilities of a transformer 35
3.4 Processingacommand 36
3.4.1 Communicating with the application 38

‘ﬁ 8182595 Rev C 3/216

page: 5/218

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 6/218

Contents Multicom 4
3.4.2 Deferredcommands 38

3.4.3 Streaming and hybrid transformers L. 40

3.5 Abortingcommands 41

3.6 Schedulingandre-entrancy i 42

3.7 Parameter passing 42

3.71 Datarepresentation 43

3.7.2 Mapping application data structures into MME parameters 43

3.7.3 Namespace management i iiiiinninnnn. 46

3.7.4 An example e 46

4 MME APl i ittt et n e 48
4.1 Function definitions 48

4.2 MME constants, enums andtypes i 75

5 Overview of the inter-core system (ICS) 106
5.1 Summary of ICSfacilities 107

5.2 ICS initialization and system loading 107

5.2.1 ICS configurationandsetup i, 108

5.2.2 CPU loading and initialization 108

5.2.3 ICS initialization and termination 110

5.3 Channel-based communication 111

5.4 Port-based communication 113

5.5 Memory region management 115

5.6 Name Server 117

5.7 Dynamicmodule loading 117

5.8 CPUwatchdog supportt e 118

5.9 Debug logging support 119

6 Inter-core system (ICS) APl a i 120
6.1 ics_ function definitions 120

6.2 ICS_ function definitions 143

6.3 Macro definitions 194
Appendix A ICS board supportpackageccciiiiiiinnnnnnns 195
AA BSP datastructures 196

4/216 8182595 Rev C ﬁ

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 7/218
Multicom 4 Contents
A.1.1 CPUtable e 196
A1.2 Mailbox table. 197
A1.3 Resetand bootaddresses 197
A1.4 CPUCOreName e 199
A2 ExampleBSPtemplate......... 199
A.2.1 CPUtable 199
A22 Mailboxtables. e 200
A2.3 Resetandbootaddresses L. 202
A24 CPUCOrenamet i e e e 203
Appendix B MME supplement.t iiiiiiinnnnnnnnns 204
B.1 Parameterencoding 204
B.1.1 Samples definitions. 204
Appendix C Advanced buildoptions oL, 208
C.1 Debugging assertionsand logging i, 208
C.2 Tuneableparameters i e 209
Appendix D ICS Linux module parametersccciiiiiinnrnnnns 210
D.1 Support for declaring ICS regions on the module load 210
D.2 Support for declaring ICS companion firmware on the module load. ... 210
D.3 Support for contiguous allocations from a named BPA2 memory partition. .
210
Revision historyccoiiiiiiiiii ittt nnnannnnnnns 211
g o (= G 213
'S7i 8182595 Rev C 5/216

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 8/218

Preface Multicom 4

Preface

Comments on this manual should be made by contacting your local STMicroelectronics
sales office or distributor.

Document identification and control

Each book carries a unique identifier of the form:
nnnnnnn Rev x
where nnnnnnn is the document number, and x is the revision.

Whenever making comments on this document, quote the complete identification
nnnnnnn Rev x.

Terminology

The first ST Micro Connect product was named the “ST Micro Connect’; it is now known as
the “ST Micro Connect 1” and the term “ST Micro Connect” is used to refer to the family of
ST Micro Connect devices. The “ST Micro Connect 2” replaces the “ST Micro Connect 1”.
These names are abbreviated to “STMC”, “STMC1” and “STMC2”.

Conventions used in this guide

General notation

The notation in this document uses the following conventions:
® sample code, keyboard input and file names,
® variables, code variables and code comments,
® cguations andmath,

® screens, windows, dialog boxes and tool names,
® instructions.

Hardware notation

The following conventions are used for hardware notation:
® REGISTER NAMES and FIELD NAMES,
e PIN NAMES and SIGNAL NAMES.

J

6/216 8182595 Rev C

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595

REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 9/218

Multicom 4

Preface

Software notation

Syntax definitions are presented in a modified Backus-Naur Form (BNF) unless otherwise
specified.

Terminal strings of the language, that is those not built up by rules of the language, are
printed in teletype font. For example, void.

Nonterminal strings of the language, that is those built up by rules of the language, are
printed in italic teletype font. For example, name.

If a nonterminal string of the language starts with a nonitalicized par, it is equivalent to
the same nonterminal string without that nonitalicized part. For example, vspace-
name.

Each phrase definition is built up using a double colon and an equals sign to separate
the two sides (‘: : =).

Alternatives are separated by vertical bars (*|’).
Optional sequences are enclosed in square brackets (‘[’ and ‘1°).
Items which may be repeated appear in braces (‘{’ and ‘}’).

Mathematical notation

A range of values can be shown using square braces, [1, and round braces, (). Square
braces mean the nearest value is included, and round braces mean the nearest value is not
included.
For example:
[1 3] is the values 1, 2, 3
[1 3) is the values 1, 2
(1 3] is the values 2, 3
(1 3) is the value 2 only
Acknowledgements
Linux®is a registered trademark of Linus Torvalds.

8182595 Rev C 7/216

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 10/218
Building Multicom Multicom 4
1 Building Multicom
1.1 Overview

Multicom 4 is supplied as a set of source files and a set of test suites tailored to support
certain ST SoCs. In addition sample board support packages (BSPs) are provided.
This chapter explains how to build the sources and test suites and then to compile and link
the Multicom 4 libraries before running the test suites under the required OS. It also explains
how to use the sample BSP as a template for creating new BSPs.

Multicom 4 has been developed and tested for target CPUs running both OS21 and Linux
(STLinux R2.3 and R2.4).

1.1.1 Code organization

Unpack the Multicom distribution on a suitable host machine which has the appropriate
target toolsets installed. See Section 1.1.2 on page 9 for a list of applicable toolsets. These
toolsets must be included in your PATH.

The main code is split between two top level directories;

[J source

[J test

The source directory contains all the code for the ICS and MME system libraries. The test
directory contains many self tests which test each subsystem of ICS and MME.

The Multicom distribution contains a deep directory structure. An overview of these
directories is listed in Table 1.

Table 1. The distribution directories

Directory Contains

docs Product documentation.

source/include C header files used by every processor.

source/src/bsp BSP configuration files for each SoC

source/src/ics Complete source code for the ICS implementation

source/src/mme Complete source code for the MME implementation
test/src/tests/ics |Test suite for the ICS subsystem

test/src/tests/mme |Test suite for the MME subsystem

lib/<os>/<arch> Compiled libraries for each OS and SoC

bin/<os>/<arch> Compiled test codes for each OS and SoC

All makefiles supplied with Multicom use GNU make syntax. Therefore in order to rebuild
the distribution, run the test suites or build any example, then a version of make compatible
with GNU make must be available.

All target resident code supplied with Multicom is provided in source form to facilitate
debugging and porting.

8/216 8182595 Rev C 1S7]
©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 11/218

Multicom 4 Building Multicom

1.1.2 Compiler recommendations

The Multicom 4 system has been tested using the following products;

® ST200 Micro Toolset R6.2.1, R6.4.0, R6.5.0, R7.0.0

® ST40 Micro Toolset R4.4.0, R5.0.0

® ST Micro Connection Package R1.5.0

e STLinux R2.3, R2.4

It is recommended these versions or later of the compiler toolsets are used®.

Note: Several issues have been found when using the ST200 Micro Toolset R6.3.0. In addition
issues have been found using the GNU make tool under Windows, so GNU make 3.81 or
later is recommended.

1.2 Building the library code

The source directory must be built first, before any of the tests are built. For OS21 builds,
makefiles are provided for each CPU architecture.

For example, to build Multicom 4 for the MB671/STi7200, issue the following commands;

cd source
make -f Makefile.st40
make -f Makefile.st200

To build the kernel module for Linux, requires a command sequence of the form:

export KERNELDIR=<path to_original_linux_kernel_sources>
export O=<path_to _built_linux kernel_ sources>

For example, issue the following commands (adjusting the kernel paths as necessary for the
desired target kernel):

export KERNELDIR=/usr/src/linux-sh4-2.6.23.17_stm23_0122
export O=/lib/modules/linux-sh4-2.6.23.17_stm23_0122_mb671

cd source

make ARCH=sh CROSS_COMPILE=sh4-linux-

To build the Linux userspace MME interface library, issue the following commands:

cd source
make -f Makefile.linux

b. Please contact your ST FAE or ST support centre for information about Multicom 4’s compatibility with later
versions of ST Toolsets.

KYI 8182595 Rev C 9/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 12/218

Building Multicom Multicom 4

1.3 Building the test code

Having built the source tree, the tests can now be built.
For example, under OS21 on an MB671/STi7200, issue the following commands:

cd test

make -f Makefile.st40 PLATFORM=mb671

make -f Makefile.st200 PLATFORM=mb671_audiol
make -f Makefile.st200 PLATFORM=mb671_videoO
make -f Makefile.st200 PLATFORM=mb671_audiol
make -f Makefile.st200 PLATFORM=mb671_videol

To build the kernel test modules for Linux, issue the following commands (adjusting the
kernel paths as necessary for the desired target kernel):

export KERNELDIR=/usr/src/linux-sh4-2.6.23.17_stm23_0122
export O=/lib/modules/linux-sh4-2.6.23.17_stm23_0122_mb671

cd test
make ARCH=sh CROSS_COMPILE=sh4-linux-

To build the userspace test MME executables for Linux, issue the following commands:

cd test
make -f Makefile.linux

1.4 Compiling and linking against the Multicom 4 libraries

In order to compile a test application using the Multicom 4 libraries you need to link against
the binary library.

For example, to compile an OS21 ST40 test program for the MB671/STi7200 you could
issue a command similar to the following;

shd4gcc -mboard=mb671 -mruntime=o0s2l -o test40.out test.c\
-Isource/include \
-Lsource/lib/0s21/st40 -1lmme -lics \
-Lsource/lib/0s21/st40/stx7200/st40 -lics_bsp\
-rmain -Wl, --wrap=_write_r

For the Audio0 ST231 CPU the command would be:

st200cc -mboard=mb671_audiol -msoc=sti7200 -mcore=st231\
-mruntime=0s21 -o test200.out test.c\
-fno-dismissible-load\
-Isource/include\
-Lsource/lib/0s21/st231 -1lmme -lics\
-Lsource/lib/o0s21/st231/stx7200/audio0 -lics_bsp \
--rmain -Wl, --wrap=_write_r

To compile a Linux userspace ST40 MME test program, issue a command, similar to the
following:

sh4-linux-gcc -o test.out test.c
-Isource/include -Lsource/lib/linux/st40 -lmme

J

10/216 8182595 Rev C

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

Multicom 4 Building Multicom
Note: 1 The ST231 -fno-dismissible-1load option is only necessary if the companion code
has not correctly enabled SCU speculation for all possible memory locations that will be
accessed by the ST200.
2 The linker --wrap=_write_xr argument allows the ICS system to intercept all text output
from the target executable and log it into the CPU cyclic log buffers, for each CPU.
1.5 Building dynamic modules for use with Multicom 4
ICS includes infrastructure that allows code modules to be dynamically loaded into the
running CPUs (0OS21 only). See the Chapter 5: Overview of the inter-core system (ICS) on
page 106 for more details.
In order to compile a compatible ELF module a command similar to the following can be
used,;
st200cc -mcore=st231 -mruntime=o0s21\
dyn.c -o dyn.out\
-Isource/include\
-nostdlib -fpic --rlib -fvisibility=protected\
-Wz, -z, max-page-size=1
Note: The -wWz, -z ,max-page-size=1 option is a temporary workaround for a bug detected in
the ST200 R6.3.0 toolset.
1.6 Debugging support
A lot of debug tracing is included in the Multicom 4 code, but by default these messages are
not compiled into the libraries. In order to be able to use the debug logging, the library code
will need to be rebuilt using the following make command line or environment option:
ICS debugging
export DEBUG_CFLAGS="-DICS_DEBUG"
MME debugging
export DEBUG_CFLAGS="-DMME_DEBUG"
Debug libraries can be built alongside the default non-debug libraries by adding the
following option to the make command line:
MULTILIB="/dbg"
This causes the debug enabled libraries to be placed in a separate dbg subdirectory in the
build tree. To cause the test executables to be linked against these libraries, the same
make command line option should be used when compiling the tests.
As soon as the debug enabled libraries have been built, debug logging can be configured
dynamically by using the ics_debug_flags () and MME_DebugFlags () APl calls. The
debug logging level can also be configured statically by specifying the following make
command line or environment option:
ICS debugging
export DEBUG_CFLAGS="-DICS_DEBUG -DICS_DEBUG_FLAGS=1"
MME debugging
export DEBUG_CFLAGS="-DMME_DEBUG -DMME_DEBUG_FLAGS=1"
Ay 8182595 Rev C 11/216

page: 13/218

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 14/218

Building Multicom Multicom 4

Where ICS_DEBUG_FLAGS and MME_DEBUG_FLAGS can be set to a bitmask for each
subsystem for which logging is required. See Section 5.9: Debug logging support on
page 119 for further details.

For the Linux kernel modules the ICS and MME debugging level can be set by using the
ics_debug_flags () and MME_DebugFlags () function calls or by setting the module
parameters, see Section C.1: Debugging assertions and logging on page 208.

1.6.1 Debug logging

By default all ICS and MME debug log messages are logged to a cyclic buffer. Under Linux
these logs can be easily accessed using the proc£s filing system. For example, to dump
out the current log for CPU #1, issue the command:

cat /proc/ics/cpull/log

This command dumps out all the messages logged since the last time the log was dumped.
If the logging output has exceeded the size of the cyclic buffer then only the newer
messages are seen.

Note: By linking against debug built libraries the size of the cyclic log buffer is greatly increased.

1.7 Running the tests under 0S21

Running the OS21 based tests is just a matter of loading and running the primary test
executable. For tests that make use of multiple CPUs the corresponding executables are
loaded directly by the test harness. All test executables are compiled into the test/bin
directory and should be executed from the top level test directory.

For example running a test on an MB671 may use a command such as;

cd test
shdxrun -t stmc:mb671:st40, tapmux_mux=1 \
-e bin/o0s21/st40/mb671/st40/ics/channel/channel00 main.elf

Note: The . elf files are simply stripped versions of the . out files to reduce load times.

1.8 Running the tests under Linux

To run the test modules under Linux, first the appropriate Linux kernel needs to be booted.
Log into the target CPU via a root equivalent account and then the ics. ko module should
be inserted using;

cd test

insmod ../source/src/ics/ics.ko init=0 debug_flags=0
insmod ../source/src/ics/ics_user.ko

insmod ../source/src/mme/mme.ko init=0 debug_flags=0
insmod ../source/src/mme/mme_user.ko

Finally the individual test module can be loaded using:
insmod src/tests/ics/channel/channel00_main.ko

However, the tests which require further executables to be loaded require that all binaries
are copied into /1ib/firmware on the target filing system. Because /1ib/firmware

12/216 8182595 Rev C I‘YI

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595

REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

Multicom 4 Building Multicom

Note: 1
2

1.9

1S74

does not support directory hierarchies, each file needs to be renamed to include the CPU
name.

For example, on an MB671 we might do:

cp bin/os21/st231/mb671/audiol/ics/channel/channelll _main.elf \
/lib/firmware/channelll_main.audio0O.elf

The Linux test suite fails if these binaries are not present or have a different filename.

The Linux /1ib/firmware file loading system has a maximum filename length of 32
characters including the terminating ‘\ 0".

BSP configuration

Currently the ICS is supplied with BSPs for a limited number of SoCs.

Appendix A: ICS board support package on page 195 describes how to create a BSP for
other SoCs.

8182595 Rev C 13/216

page: 15/218

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 16/218

Using the MME API Multicom 4

2 Using the MME API

2.1 Overview

The MME API provides a means for an application program running on the host processor
to control and manipulate a codec or similar media transformer running either on the same
processor or on a different companion processor. The aim of a companion processor is to
assist the host in transforming data in real time and it communicates with the host using the
ICS communication interface, see Chapter 5: Overview of the inter-core system (ICS) on
page 106. Both host and companion transformers may, optionally, make use of hardware
accelerators to off-load some or all of the work. The MME API remains the same
independent of the location or type of the transformer, effectively hiding the (potentially
complex) structure of the system from the application. The MME API is intended to form part
of the driver layer of typical multimedia software stacks. See Figure 1 on page 1.

2.1.1 Transformers and transformer instances

Within the MME system the division of roles between the host and companion processors is
logically described by what are known as transformers. Transformers are named software
modules that normally reside in the companion processors. A companion CPU will register a
transformer for each codec or media transformation it can perform (see Section 2.3.2:
Registering transformers on page 20). The host will then use the symbolic name of each of
the transformers it requires, to lookup and instantiate them, see Figure 2.

Figure 2. Transformer instances - single host

Host (ST40)
Companion (ST231)
Video_decode ~|
Transformer_name_1

Audio_decode

Transformer_name_2

i

Companion (ST231)

Transformer_name_3

- Transformer_name_4

J

14/216 8182595 Rev C

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595

Multicom 4

REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 17/218

Using the MME API

2.1.2

When a transformer is instantiated, the abstract transformer is combined with parametric
and state information; it is then capable of processing data. This is called a transformer
instance.

Typically, transformers that rely on hardware accelerators can only have one instance at a
single point in time due to there only being one accelerator. However, for software
transformers, it is unusual for anything other than available memory to limit the number of
instances of a particular transformer.

Multi-hosting support

This version of Multicom also supports a usage model known as Multi-hosting.
Traditionally in an MME system there would have been one host CPU (for example, an
ST40) and multiple companion CPUs (for example, ST231s), however newer SoCs now
incorporate multiple ST40 CPUs. Multi-hosting means that any CPU in the MME system can
act as a host and hence instantiate and issue commands to transformers. So in practise any
CPU in an MME system can act either as a host or a companion or both simultaneously.
The only exception to this is that a program in Linux user space cannot register
transformers.

Multi-hosting can be used to build complex systems where decode and compute are off-
loaded to one or more of the companions CPUs. Here are a couple of example usage
scenarios.

® Onamulti ST40 SoC such as the STi7141 both the ST40 CPUs could act as hosts and
issue commands to any one of the three ST231 CPUs simultaneously.

® On an SoC such as the STi7200, which has four ST231s, the Audio decode could be
partitioned and off-loaded to both Audio CPUs, as shown in Figure 3. This can be done
transparently to the application running on the ST40 host by 'nesting' transformations.

For example, the host CPU issues an Audio decode transformation command to the
Audio codec which is registered on the AudioO CPU, this transformer has in turn
instantiated a transformer registered on the Audio1l CPU. As each command arrives,
the Audio codec running on AudioO issues transformation commands to Audio1 to off-
load some of the compute. Once these complete it can then complete the original
transformation command from the host.

8182595 Rev C 15/216

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595

REVISION C

Using the MME API

CONTROLLED DOCUMENT (Check latest revision)

DATE 28-FEB-2011 page: 18/218

Multicom 4

Figure 3.

Transformer instances: multi-hosting

Host (ST40)

Video_decode

Audio_decode

Companion (ST231)

Transformer_name_1
Transformer_name_2

Companion (ST231)

Transformer_name_3

Transformer_name_4

A
[
[
[
[
[
[
|
[
[
[
[

16/216

8182595 Rev C

©Copyright STMicroelectronics

N/A

Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595

Multicom 4

REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 19/218

Using the MME API

213

Note:

214

2.1.5

Note:

1

Commands and events

Transformer instances are controlled by sending them commands. Each command is a self-
contained unit of work consisting of a due time, a command code, some transformer specific
parametric information and the data buffers to be transformed, by the command. All
commands of the same priority are executed in due time order.

The priority of a command is inherited from the transformer instance with which it is
associated. The priority of a transformer instance is supplied by the application when the
transformer is instantiated.

Because commands are executed on different processors and, potentially, can be deferred
for execution by different hardware accelerators, this does not imply that across the system
as a whole, all commands will be issued or complete in due time order.

Each command is associated with a status structure that, among other things, provides the
unique identifier by which the command can be managed together with an indication of the
command’s current state.

Commands are submitted for execution asynchronously, that is, the function to issue the
command completes successfully before the command has completed.

The MME can generate events when a command completes or fails. Event notification may
be optionally enabled by the application programmer when a command is submitted. Events
are delivered to the application by using callbacks.

Callbacks

A callback function and application-specific callback data is associated with a transformer
when a transformer is instantiated. When a command is sent to a transformer, the
application can choose whether or not it will be notified of any events associated with the
command, by the associated callback.

Due time

The due time is used by the MME implementation to determine in what order to process
commands. The command queue for each transformer is maintained in due time order and
when a command is dispatched all the queues are examined and the one with the lowest
due time is selected for execution.

The due time is only relevant to MME_SET GLOBAL_TRANSFORM_PARAMS and
MME_TRANSFORM; MME_ SEND_BUFFERS commands are executed in strict FIFO order and
can pre-empt currently running commands. See Section 2.8: Fault detection and recovery
on page 28.

Neither the MME host nor the companion is aware of the current system time. This leaves
the choice of what time unit to use entirely at the application designers discretion. In most
cases using the host processor’s system clock is recommended. Although the MME
implementation does not know the unit of time, it does know that as time progresses the due
time will eventually reach 0xff£££££f and overflow. For this reason when due times are
compared it is not a simple magnitude comparison. Instead the times are arranged, such
that taer - tpefore iS l€ss than Ox7EEEEEEE.

Figure 4 shows what this comparison means in practice by showing how t, will be compared
against all possible 32-bit values.

8182595 Rev C 17/216

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595

REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

Using the MME API Multicom 4

2.1.6

18/216

Figure 4. Time arithmetic

x ticks
Past
0x7FFF FFFF 0x8000 0000
Future
Before Now
After Now
y ticks
0 OxFFFF FFFF

When due times are exactly equal then the least recently issued command will be executed
first. This permits commands to be executed in strict FIFO order if their due times are
always the same value; zero is a good candidate value in this case although any value can
be used.

There are three obvious ways an application may choose to utilize the due time:

® As constant value across all transformers. This results in FIFO scheduling within a
transformer and round robin scheduling among transformers.

® As unique constant values. This results in FIFO scheduling within a transformer and
prioritized scheduling among transformers. This differs from normal prioritized
scheduling because low priority transforms will not be pre-empted. This may yield
slightly better utilization of processor bandwidth at the expense of latency.

® As true due time. This results in due time scheduling within all commands irrespective
of which transformer queue they appear on.

Transformer priorities

The due time mechanism allows commands to be executed in a deterministic sequence.
However, an application may require short-duration transforms (such as a series of audio
frame decodes) to complete while a lengthy transform operation (such as a JPEG decode)
is being handled by another transformer instance.

To facilitate this MME supports five transformer priorities. A priority is assigned to a
transformer instance when the instance is created. Transformer priorities are mapped onto
the underlying operating system thread priorities; an execution thread is created for each
priority for which a transformer is instantiated.

8182595 Rev C I‘YI

page: 20/218

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595

REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 21/218

Multicom 4 Using the MME API
Therefore a transform command executing on a high priority transformer instance takes
precedence over a command executing on a lower priority transformer instance.
Commands at a particular priority are submitted sequentially to their transformer instances
in due time order.
217 Structure size
The MME API uses MME structures to pass data. Typically there is a size field
StructSize which must be set to the size of the structure in bytes, see Section 4.2: MME
constants, enums and types on page 75.
2.2 Summary of MME facilities
The following is a summary of the main facilities provided by the MME API.
® MME initialization, see Section 2.3 on page 20
MME provides API calls to allow the application to set up MME and to register
transformers.

® Managing transformer lifetimes, see Section 2.4 on page 21
Transformer instances can be created or destroyed using the MME API. It is also
possible to examine the capabilities of a transformer before it is instantiated.

e Buffer and cache management, see Section 2.5 on page 22
Data buffers are used extensively by MME to transport unstructured data between the
application and the transformers. MME provides API calls to allocate and manage data
buffers as well as subdividing them. Flags are provided to influence cache
management of data buffers.

® Application and transformer specific data, see Section 2.6 on page 26
MME provides a mechanism for passing application-specific or transformer data to and
from the transformer.

® Issuing commands, see Section 2.7 on page 26
The central function of the MME API is to perform transformations. Three types of
commands may be sent to a transformer, as described in Section 2.8 on page 28.
Section 2.10 on page 30 describes the difference between a frame-based transformer
and a stream-based transformer.

The chapter finishes with a description of linking and loading issues for different operating

systems, Section 2.11 on page 31.

'S7i 8182595 Rev C 19/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 22/218

Using the MME API Multicom 4

2.3 Initialization

Initialization of a system is divided into two stages:

1. Initializing MME (which presupposes that the ICS is initialized.)

2. Registering transformers, if they are being used

It is essential that all host and companion processors in a system are initialized. However,

some stages of the initialization may be omitted for particular operating environments
supported by MME:

® For multi-processor OS21 systems, all steps are required for companion processors.
Registering transformers is optional for host processors.

® For Linux kernel space operation, MME is initialized automatically when the MME
module is loaded. Registering local transformers is optional.

Section 2.11.2: Linux on page 31 contains further details about loading Linux kernel

modules.
Note: It is not possible to register transformers in Linux user space.
2.3.1 Initializing MME

The MME library is initialized using the following function:
MME_ERROR MME_Init (void)

The MME library must be loaded and initialized on each processor and user space process
in the system.

Note: The Linux kernel MME implementation automatically calls MME_Init during module load.
No other API can be called until the library is initialized.

In a system where multiple threads use MME, it is permissible for each thread to call
MME_Init. The first call performs initialization, returning MME_SUCCESS if no error occurs.
Any subsequent calls simply return MME_ALREADY INITIALIZED. Thatis, a second call to
MME_TInit does not re-initialize MME.

Note: Calls to MME_Init are not counted. Thus particular care must be taken de-initializing MME
when sharing the MME between multiple threads.

2.3.2 Registering transformers

A transformer is registered with a name and associated function pointers by using the
following function:

MME_ERROR MME_RegisterTransformer (
const char *name,
MME_AbortCommand_t abortFunc,
MME_GetTransformerCapability_t getTransformerCapabilityFunc,
MME_InitTransformer_t initTransformerFunc,
MME_ProcessCommand_t processCommandFunc,
MME_TermTransformer_t termTransformerFunc)

Each of the functions pointed to is described in detail in Chapter 3: Writing an MME
transformer.

J

20/216 8182595 Rev C

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 23/218

Multicom 4 Using the MME API

2.3.3 Example

This section provides examples of how MME is started on a host CPU and on a companion
CPU. The examples illustrate the startup sequence for the host application and for the
companion. It is assumed that the operating system has been started on each CPU.

Note: For brevity, return code checks have been omitted from the examples.

Host-side example

/* Initialize ICS */
err = ICS_cpu_init(0);

/* Intitialize the MME system for a host */
res = MME_TInit();

/* Init transformer */
res = MME_InitTransformer ("com.st.mcdt.mme.test_transformer",
&initParams, &transformerHandle) ;

/* Send a transform command */
res = MME_SendCommand (transformerHandle, MME_TRANSFORM, ...);
res = MME_TermTransformer (transformerHandle) ;

Companion-side example

/* Initialize ICS */
err = ICS_cpu_init (0) ;

/* Intitialize the MME system for a companion */
res = MME_Init();

/* Register the transformers active on this CPU */
res = MME_RegisterTransformer ("com.st.mcdt.mme.test_transformer",
abortFunc, getCapabilityFunc,
initFunc, processCommandFunc, termFunc);

24 Managing transformer lifetimes

Transformer instances can be created and destroyed using the following functions:

MME_ERROR MME_InitTransformer (
const char *name,
MME_TransformerInitParams_t *params_p,
MME_TransformerHandle_t *handle_p)

MME_ERROR MME_TermTransformer (MME_TransformerHandle_t handle_p)
The name argument specifies the name of the previously registered transformer.

params_p is used to specify one of five priority levels for the transformer together with
details of the callback function used to communicate any events associated with this
transformer and its commands. Additionally the parameter structure may contain a pointer
to transformer specific parameters containing any initial state the transformer may require.
See Section 2.6: Application and transformer specific data on page 26 and Section 3.7:
Parameter passing on page 42.

If MME_InitTransformer returns successfully then handle_p is supplied with a handle
used to issue commands and terminate the transformer. Once initialized, a transformer can
execute an arbitrary number of commands before finally being terminated.

KYI 8182595 Rev C 21/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595

REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

Using the MME API Multicom 4

Note:

2.4.1

2.5

22/216

MME_TermTransformer is used to destroy a transformer instance thus freeing any
resources used by the transformer.

It is not possible to terminate a transformer if there are any outstanding commands pending.
If this is attempted an error is returned.

Querying the capabilities of a transformer

It is sometimes useful to examine the capabilities of a transformer before it is instantiated,
either for error checking or to ensure the correct transformer is being used. MME allows
transformers to publish their capabilities without requiring a handle. This enables
transformers to be examined before any calls to MME_InitTransformer.

The following function is used for this purpose:

MME_ERROR MME_GetTransformerCapability (
const char *transformerName,
MME_TransformerCapability t *transformerCapability)

The transformer is able to describe its preferred input and output formats together with its
version number. Transformer specific details can also be copied into a user-supplied buffer.

Buffer and cache management

Data buffers are used throughout MME to transport unstructured data between the
application and transformers. In this case, unstructured is used to mean that data has
identical representation on all processors regardless of endianness or similar concerns; it is
a simple stream of bytes. A data buffer describes a logical group of memory locations that
contain or are intended to contain media data. A data buffer is represented by the structure
MME_DataBuffer t.

Each data buffer is composed of one or more scatter pages. A scatter page describes a
single sequential group of memory locations, or more specifically, a base pointer and a size.
A data buffer comprised of a single scatter page is a linear buffer while a data buffer
consisting of multiple scatter pages is a scattered buffer.

A scatter page is represented by the structure MME_ScatterPage_t.

Figure 5. A scattered data buffer

Completely-filled
4096 byte
scatter page

Half-filled Half-filled

12288 byte > 4096 byte

data buffer scatter page

Empty
4096 byte
scatter page

J

8182595 Rev C

page: 24/218

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

Multicom 4

Using the MME API

Note:

2.5.1

2.5.2

Note:

Although both linear and scattered buffers are properly handled by the MME API, some
transformers are not able to efficiently support scattered buffers. For example, using
scattered buffers makes it difficult to delegate work to accelerators that only support linear
DMA.

Allocating data buffers

Data buffers can be allocated and freed using the following functions:

MME_ERROR MME_AllocDataBuffer (
MME_TransformerHandle_t Handle,
MME_UINT Size,
MME_AllocationFlags_t Flags,
MME_DataBuffer_t **DataBuffer_pp)

MME_ERROR MME_FreeDataBuffer (MME_DataBuffer_ t *DataBuffer_ p)

Buffers allocated using MME_A11ocDataBuf fer come from a common buffer pool which is
of a fixed size. The size of this buffer pool can be varied by adjusting the tuneable value
MME_TUNEABLE_BUFFER_POOL_SIZE before calling MME_Init.

All buffers allocated from the common buffer pool are guaranteed to be accessible by all
transformers, and both cached and uncached translations can be requested by making use
of the Flags argument.

If the user is intending to manually manage the MME data buffers then the default buffer
pool size can be set to a small value. However, even in this case, the common buffer pool
will be used for the MME command meta-data and hence should be sized accordingly.

Manually managing data buffers

MME permits any memory locations accessible by the host to be used in data buffers and
scatter pages.

Linux User Mode applications are the exception to this, see Section 2.5.4.

This allows most applications to manage memory for themselves and construct data buffers
and scatter pages as required.

All user managed buffer memory must first be registered with MME by using the
MME_RegisterMemory function. Failure to do this causes the MME_ SendCommand
operation to fail. If cached and uncached translations of this buffer memory are required,
then memory registration calls with both cached and uncached translations of the memory
region must be made.

Memory can be registered and deregistered using the following functions:

MME_ERROR MME_RegisterMemory (MME_TransformerHandle_t Handle,
void *Base,
MME_SIZE Size,
MME_MemoryHandle_t *Handle_p)

MME_ERROR MME_DeregisterMemory (MME_MemoryHandle_t Handle)

8182595 Rev C 23/216

page: 25/218

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 26/218

Using the MME API Multicom 4

Note: Cached buffers that are not aligned to the largest cache line size in the system pose
significant problems because this makes writes by the companion CPU to those addresses
unsafe.

2.5.3 Subdividing a data buffer

The application may divide the scatter pages returned by MME_AllocDataBuffer () into
application-oriented scatter pages, so long as the divided pages reside entirely within the
allocated pages.

An application must not make assumptions about the number of scatter pages returned by
MME_AllocDataBuf fer unless the flag MME_ALLOCATION_PHYSICAL is specified, in
which case a single page is returned.

A simplified example of dividing a physical scatter page is shown below. This example takes
the scatter page returned by MME_AllocDataBuffer and divides it into
NUM_SCATTER_PAGES scatter pages:

MME_DataBuffer_t* dataBuffer;

MME_ScatterPage_t* origPage;

MME_ScatterPage_t scatterPage[NUM_SCATTER_PAGES] ;
int newPageSize;

unsigned char* pageBase;

/* Allocate a buffer of ’‘size’ bytes */
MME_AllocDataBuffer (hdl, size, MME_ALLOCATION_PHYSICAL, &dataBuffer);

/* Keep a record of the original scatter page array */
origPage = &dataBuffer->ScatterPages_p;

/* Calculate size of each new scatter page - ignore the remainder bytes */
newPageSize = origPage->Size/NUM_SCATTER_PAGES;
pageBase = origPage->Page_p;

/* Set the data buffer to use the new array of scatter pages */
dataBuffer->ScatterPages_p = scatterPage;

for (i=0; i<NUM_SCATTER_PAGES; i++) {
dataBuffer->ScatterPages_pl[i] .Page_p = pageBase;
dataBuffer->ScatterPages_p[i].Size = newPageSize;
dataBuffer->ScatterPages_pl[i] .BytesUsed = newPageSize;
pageBase += newPageSize;
}
/* Now use the data buffer with the scatter pages */

/* Free the data buffer when no longer required */

dataBuffer->ScatterPages_p = origPage;
MME_FreeDataBuffer (dataBuffer) ;

254 Data buffers in Linux user mode

A Linux user application writer should endeavor to use MME_AllocDataBuffer () to
allocate a data buffer for use by MME_ SendCommand () . If this is not feasible because a
data buffer has been allocated in kernel space by another agent (for example a video

24/216 8182595 Rev C I‘YI

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 27/218

Multicom 4 Using the MME API

driver), the corresponding user space address of this buffer may be used in the Page_p
field of a scatter page (MME_ScatterPage_t).

MME_SendCommand ensures that the physical pages that comprise the buffer:

® belong to the calling process

® are physically contiguous

If either of these criteria are not met, MME_ SendCommand returns MME_ INTERNAL_ERROR.

The cacheability of these contiguous pages is determined from the cacheability flag within
the Virtual Memory Area (VMA), in which the pages reside.

2.5.5 Cache management

When a data buffer is held in cached memory, MME is forced to make a pessimistic
assumption regarding whether it is held in a particular processor’s cache, in order to
guarantee correctness. In many cases, the application is in a position to provide hints that
can reduce this pessimistic behavior. These hints have no effect if memory is uncached,
and can therefore be applied by an application even for affinity-allocated memory (see
Section 2.5.1: Allocating data buffers on page 23).

For example, a buffer populated by an incoherent DMA peripheral (and not subsequently
read by the CPU) is known not to be in a processor’s cache. It is therefore wasteful to spend
time flushing such a buffer from memory.

For this reason, each MME scatter page can be marked with the cache management hints
shown in Table 2 on page 25, prior to being made available to the host.

Table 2. MME_ScatterPage_t Flagsin and FlagsOut

Flag Flagsin¥ |FlagsOut® |Description

For a host this means that all input
buffers are coherent with memory
and the output buffers are not
present in the cache.
MME_DATA_CACHE_COHERENT |V v For a companion this means that
no buffers are present in the
cache. This directs MME to avoid
any unnecessary cache
invalidations or cache flushes.

Data is reused by the companion
without being read by another
MME_DATA_ TRANSIENT v processor or hardware accelerator.
This directs MME not to flush the
companion’s data cache.

1. The FlagsIn field is set by the host application before the command is issued to the MME.

2. The Flagsout field is set by the companion transformer before notifying the host that the transform is
complete.

KYI 8182595 Rev C 25/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595

REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

Using the MME API Multicom 4

2.6

2.7

26/216

Application and transformer specific data

MME provides a mechanism for passing application-specific or transformer data to and from
the transformer. When such data is to be passed it is specified by an address (of type
MME_GenericParams_t) at which the data starts and a length in bytes. A mechanism for
managing the portability of such data is described in Section 3.7: Parameter passing on
page 42.

Issuing commands

Commands are issued using the following function:

MME_ERROR MME_ SendCommand (
MME_TransformerHandle_t Handle,
MME_Command_t *CmdInfo_p)

MME_ SendCommand is asynchronous; it returns before the command has completed
processing. For this reason it is possible to examine the state of the command before it has
completed.

The application must fill in several fields of the MME_Command_t structure:

® StructSize - see Section 2.1.7: Structure size on page 19

® CmdCode - with the command to perform - see Section 2.4: Managing transformer
lifetimes on page 21

® CmdEnd - to specify whether events such as a “command completion” cause the
callback function to be called

® Due time - see Section 2.1.5: Due time on page 17

(zero for all commands ensures FIFO processing of commands)
® NumberInputBuffers -the number of input data buffers
® NumberOutputBuffers - the number of output data buffers

® DataBuffers_p - a pointer to an array of pointers to the input buffers and output
buffers. The input buffer pointers must precede the output buffer pointers in this array

® Param_p and ParamSize - with command specific parameters. These should be set
to NULL and zero respectively if there are no parameters. See Section 2.6: Application
and transformer specific data on page 26 and Section 3.7: Parameter passing on
page 42.

The state is held in the MME_CommandStatus_t structure within the MME_Command_t
structure. The command changes from state to state as shown in Figure 6 on page 27.

J

8182595 Rev C

page: 28/218

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595

REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

Multicom 4 Using the MME API

Note:

Figure 6. Command state diagram

. Start state

Submit command

MME_COMMAND_PENDING

Command de-queued

MME_COMMAND_EXECUTING

Command
deferred

Deferred state

Command succeeded Command failed

MME_COMMAND_COMPLETED MME_COMMAND_FAILED

Stop state

When a command is issued it will be in the MME_COMMAND_ PENDING state for as long as it
is enqueued, waiting for processing time to become available.

The command’s transition to the MME_ COMMAND_ EXECUTING state, occurs when it is
allocated processor time.

When a command is scheduled for execution on a companion processor, it is not possible to
distinguish between the MME_COMMAND_PENDING and MME_COMMAND_EXECUTING states
due to the requirement of minimizing communication between the host and companion. All
commands that are scheduled on a companion processor appear to the application to be in
the MME_COMMAND_EXECUTING state.

If execution has terminated, either by normal completion of processing or due to an error,
the state changes to one of the final states: MME_COMMAND_COMPLETED, Of

MME_ COMMAND_FAILED. Callbacks occur whenever execution of a command completes or
blocks due to command overflow or underflow conditions, which are described in

Section 2.10.2: Stream-based and hybrid operation on page 30.

Executing commands enter the deferred state when a transformer delegates processing to
the hardware block. (The deferred state is a conceptual state which is not observable by the
host). When a command is deferred, subsequent commands are executed by the processor
while the original command is executed by an independent hardware accelerator. A

8182595 Rev C 27/216

page: 29/218

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595

REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

Using the MME API Multicom 4

Note:

2.7.1

Note:

2.8

28/216

deferred command can either proceed directly to one of the final states or re-enter the
MME_COMMAND_PENDING state and wait for processor time.

Applications should never repeatedly poll the state of a command as this has the potential to
deny other threads the use of the processor. Instead of polling, the application should utilize
callbacks.

Aborting commands

It is possible for the application to request that a command is aborted. This is achieved
using the following function:

MME_ERROR MME_AbortCommand (MME_CommandId_t CmdId)

This function is asynchronous, it returns successfully before the request for abortion has
been passed on.

An abort is, effectively, a request for a command to immediately enter the
MME_COMMAND_FAILED state. As such the application will be notified if an abort was
possible by the command entering this state. The application will receive a callback,
assuming these are requested. If the command could not be aborted it will complete as
normal entering either the MME_ COMMAND_COMPLETED state or the MME_ COMMAND_FAILED
state with a different error code.

Although a command in the MME_COMMAND_ PENDING state can always be aborted, it is not
always possible for commands in the MME_COMMAND_EXECUTING Of deferred(© states to
be aborted, as support for abort from these states is transformer-specific.

Since commands can asynchronously move from state to state, it is possible for a command
to change state between the application observing that command in the
MME_COMMAND_PENDING state and issuing the abort. As such the application should
always consult the state of the aborted command before assuming success.

Fault detection and recovery

MME and the underlying ICS system provide simple facilities to aid the device driver writer
in coping with unexpected failures of the companion CPUs.

In particular, CPU crashes are detected, and any outstanding commands and transformers
that are hosted on the failed CPU are terminated. Further facilities are provided to allow the
programmer to ‘Ping’ the remote transformers periodically (See MME_PingTransformer on
page 66), allowing them to check that the target transformer has not hung or got stuck in an
infinite loop.

Using these facilities the device driver writer should be able to detect and recover from an
unexpected companion CPU failure. Generally this involves tidying up all the device driver
state associated with the failed CPU and transformer instances, and then reloading and
restarting the code on the companion CPU.

Multicom cannot recover from a failure of the host CPU or errors which cause a system wide
lockup. Also, if a companion failure results in corruption of memory belonging to the host
CPU, then it may fail subsequently.

c. The technicalities of aborting a deferred command is discussed in detail in Section 3.4.2: Deferred commands
on page 38.

8182595 Rev C I‘YI

page: 30/218

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

Multicom 4

Using the MME API

2.9

2.9.1

2.9.2

2.9.3

Types of commands

There are three types of command that can be issued through a call to MME_SendCommand:
e transform data

® provide additional data buffers

@ alter global parameters

A command type is selected by setting the MME_CommandCode_t field in the
MME_Command_t structure.

These types are described in Section 2.9.1 through to Section 2.9.3.

Transforming data

Data transformations are at the heart of the MME API. All the other API calls and
transformer commands exist solely to assist with data transformations.
The command code for data transformations is MME_ TRANSFORM.

Wherever possible, data transformations are supplied with both input and output buffers as
part of the transform command.

Most complex transformers also take some transformer specific command parameters.
Typically this parametric information is purely local affecting only the current transformation
although it is quite legitimate for this to affect some global state. For example, when
changing channel in a set-top box application a transformer reset might be requested.

Providing supplementary buffers

In some cases, it is not possible for a data transformation to be supplied with all the data
buffers required for the transformation to complete. The reasons for this are outlined in
Section 2.10.1 and Section 2.10.2. If a transformation cannot be supplied with all the data
buffers initially then it is necessary to supply supplementary buffers to the transformer. This
is achieved using one or more MME_SEND_BUFFERS commands.

MME_SEND_BUFFERS commands do not complete, that is, enter one of the final states, at
the point the buffers are supplied to the transformer. They complete only when the buffers
have been consumed by the transformer. This allows the application to know whether a
buffer contains valid or in-use data without having to identify which transform request was
responsible for filling it. Should such information be required, it is possible for transformer
specific command status structures to be filled in by the transformer.

Altering global parameters

Global parameters form part of each instantiated transformer and are manipulated using the
MME_SET_GLOBAL_TRANSFORM_PARAMS command code. Examples of global parameters
include the chosen output format for data, gain for each channel of a mixer or the magnitude
of reverb effects.

Global parameters can also be used to change less obvious items of global transformer
state. For example, the transformer could be directed to move any command in the deferred
state to the MME_COMMAND_FAILED state. By effectively abandoning any commands it has
deferred it will then be possible for a transformer instance to be terminated.

When altering the global parameters, no data buffers are passed into or out of the
transformer. All information required by the transformer should be passed using the

8182595 Rev C 29/216

page: 31/218

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595

REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

Using the MME API Multicom 4

2.10

2.10.1

2.10.2

30/216

transformer specific command parameters. Similarly any information returned by the
transformer should be contained in the transformer specific command status parameters.

Common types of transformer

This section distinguishes between types of transformer, based on how the input and output
buffers are managed, in order to discuss the advantages and disadvantages of each
approach.

A transformer is considered frame-based if its entire input and output buffers can be
determined at the point the transform MME_TRANSFORM command is issued. Any
transformer that does not require the use of MME_SEND_BUFFERS can therefore be
considered to be frame-based.

A transformer is considered streaming if both its input and output buffers require the use of
MME_SEND_BUFFERS.

Pure streaming transformers, while perfectly legitimate, are quite rare. Much more common
are hybrid transformers consisting of frame-based input buffers and streaming output
buffers or vice versa.

Frame-based operation

Frame-based operation is considered to be the default within MME. Although other modes
of operation are possible, if ever there is a choice between frame-based or streaming
operation then the frame-based approach is recommended.

By adopting frame-based operation, the amount of interrupt activity on both CPUs can be
minimized. Particularly for media processors this maximizes processing bandwidth.
Because all buffers are available before the transformation begins, there is no risk of the
transformer blocking, which has the potential to seriously degrade performance.

Frame-based operation is a particularly good approach for decoding multiplexed
audio/video streams common in embedded multimedia processing. For both audio and
video decode, the size of the output frame or picture is known in advance of processing. It is
also fairly easy to identify complete input frames, because the device performing the
demultiplex can readily identify end-of-frame markers.

If a frame-based transformer is not supplied with sufficient buffers, it does not block, instead
it moves to the MME_ COMMAND_ FATLED state and sets the appropriate error code in the
command status structure.

When a frame-based transformer completes, it issues a MME_COMMAND_COMPLETED_EVT
event and the application receives a callback.

Stream-based and hybrid operation

Unfortunately there are number of reasons why it may not be possible for a transformer to
be wholly frame-based:

@ transformations create an unknown quantity of output

® transformations consume an unknown quantity of input

o transformations are required to start before all available buffers are ready

The first situation is common in variable or average rate encoders. From a given input it is
computationally unfeasible to estimate how much output will be created.

8182595 Rev C I‘YI

page: 32/218

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

Multicom 4

Using the MME API

Note:

2.11

2.11.1

2.11.2

The second situation occurs when a stream format makes it difficult to identify end-of-frame
markers or simply when a stream is not divided into frames.

The final situation is comparatively rare. One example is that of decoding a large JPEG
image stored on ‘slow’ media, such as disk. It is desirable that the time between opening
and displaying the image is minimized by starting to decode data as it becomes available.
As such, once the first part of the JPEG is available, it is useful to initiate the transform,
knowing that the remaining part of the image will be provided by the application when (or
before) the input buffer underflows.

Unlike frame-based transformers, stream-based transformers (or the stream-based side of
a hybrid transformer) will not return an error during data underflow or overflow. Instead a
MME_DATA_ UNDERFLOW_EVT or MME_NOT_ENOUGH_MEMORY_EVT event is issued and the
command suspends its execution waiting for further data.

Both underflow and overflow are exceptional events and should not occur during normal
operation of a streaming transformer. They exist only to allow these circumstances to be
handled gracefully. When underflow or overflow occurs, all processing at the same priority is
halted on that processor. This has the potential to waste significant processor bandwidth,
particularly in single-purpose companion processors. Other transformer priorities are not
effected. See Section 3.4.3: Streaming and hybrid transformers on page 40.

In order to prevent these problems, the application should normally buffer sufficient input
data or output space for this situation to be avoided. Where buffering exposes latency
problems when changing streams (for example, in trick modes or during channel change)
then MME_AbortCommand provides a means to mitigate this.

When a data buffer has been consumed or filled completely, the MME_SEND_BUFFER
command completes.

If an input data buffer is only partially consumed, the command will not complete; instead it
remains pending until the next MME_TRANSFORM command consumes it.

Whether a partially filled output data buffer completes, before it is full, is transformer-
dependant. If the output consists of variable length frames, it is normal to complete a
partially-filled frame and move on to the next one. Where the output does not contain frame
markers, the buffer will not complete until it is completely filled.

Linking and loading

This section describes linking and loading issues for different operating systems.

0S21

On 0OS21, the main application must link against both the ICS and MME libraries. Assuming
the correct library search path is defined, this should be achieved by adding the following to
the link command line:

-Ilmme -lics -lics_bsp

Linux

The MME API can be used on a host processor running Linux, in either kernel mode, user
mode or both concurrently. There is a single kernel module that must be loaded and a single
library that must be linked with a user application.

8182595 Rev C 31/216

page: 33/218

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 34/218

Using the MME API Multicom 4

However, the MME kernel module must be loaded after the ICS kernel module is loaded.

Also, the user application must be linked against the MME user library. Assuming the
correct library search path is defined, this should be achieved by adding the following to the
link command line:

-1lmme

It is not valid for a Linux kernel module to call MME_Init or MME_Term because initialization
and de-initialization occur automatically when then module is loaded and unloaded.

2113 Dynamic module linking

Multicom also supports dynamic modules which can be loaded and unloaded during
application runtime. Dynamic modules are only supported on the CPUs that run OS21.

For example, in order to compile an ST231 compatible ELF module, a command similar to
the following can be used;

st200cc -mcore=st23]1 -mruntime=o0s21\
-nostdlib -fpic --rlib -fvisibility=protected\
dyn.c -o dyn.out

Note: It is recommended that ST200 Micro Toolset R6.4.0 or later is used when building dynamic
modules.

J

32/216 8182595 Rev C

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 35/218

Multicom 4 Writing an MME transformer
3 Writing an MME transformer
3.1 Overview

This chapter describes the process of interfacing a transformer to the MME API for use by
applications. It is assumed that the reader is completely familiar with the MME API
described in Chapter 2: Using the MME API on page 14.

The function to register transformers, MME_RegisterTransformer, is introduced in
Section 2.3.2: Registering transformers on page 20. This function takes as arguments, five
function pointers which are called by MME when a transformer-specific operation is
requested by the application, see Table 3. All transformers are therefore required to provide
five functions corresponding to the function pointers required by
MME_RegisterTransformer. The specification of each of these functions is described in

this chapter.

Table 3. Transformer function pointers

Function pointer type Description

MME_AbortCommand_t Transformer API function to abort a command.

o Transformer API function to return a transformer
MME_GetTransformerCapability_t

capability.
MME_InitTransformer_t Transformer API function to initialize a transformer.
MME_ProcessCommand_t Transformer API function to process a command.
MME_TermTransformer_t Transformer API function to terminate a transformer.

In addition to providing the five functions, all but the most basic transformer will require
parameters to control how it processes data. The parametric information is typically defined
in a transformer specific header file included by both the application and the transformer
code. Detailed information on passing parameters in a portable, endian-neutral manner is
discussed in Section 3.7 on page 42.

The process for writing a transformer is identical whether you are targeting the host or a
companion processor although obviously where the host and companion have different
CPU architectures then optimization decisions (such as data buffer management) may have
to be revisited. Transformers that utilize a hardware accelerator require only a small amount
of extra complexity in the MME interface to manage asynchronous processing. This is
described further in Section 3.4.2: Deferred commands on page 38.

KYI 8182595 Rev C 33/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 36/218

Writing an MME transformer Multicom 4

3.2 Managing transformer lifetimes

Two of the function pointers required by MME_RegisterTransformer are concerned with
managing the lifetime of a transformer. The transformer must implement the corresponding
functions, one is responsible for initializing a transformer instance while the other is
responsible for terminating it.

This initialization function pointer is of type MME_InitTransformer_t:

typedef MME_ERROR (*MME_InitTransformer_t) {
MME_UINT initParamsLength,
MME_GenericParams_t initParams,
void **context)

The termination function pointer is of type MME_TermTransformer_t:

typedef MME_ERROR (*MME_TermTransformer_t) (void *context)

3.2.1 Instantiation

MME_InitTransformer_t is called as a result of an application call to
MME_TInitTransformer, see Section 2.4: Managing transformer lifetimes on page 21.
MME_InitTransformer_t is supplied with three parameters:

® a pointer to the transformer specific parameter block initParamsLength

e the length of this block

® context, in which it must store a pointer to its state information

If the transformer does not take any specific initialization parameters (or the application
neglected to provide them) initParams is NULL and initParamsLength is zero.

If it is not possible to initialize a transformer instance, either because the supplied
parameters are incorrect, or because there is no available hardware resource, then
MME_InitTransformer_t can return an error code. Otherwise as a result of this function
being called the transformer must:

® reserve any hardware resources required by the transformer when running

® allocate memory to contain state and parametric information of the transformer
instance and return the address of this in the context arguments

® initialize any relevant state within the context structure

® copy any relevant parametric information from the parameter block into the context
structure.
The parameter information must be copied since the transformer can no longer
address any part of the parameter block once this initialization function has completed.

® provide the MME framework with a pointer to context data specific to the transformer
instance

3.2.2 Context data

The context data is key to managing multiple instances of a transformer, and must contain
all state relevant to a transformer instance. Any temporary working values must be stored in
the context data. A transformer that can be instantiated multiple times must avoid global
variables. In fact, because the transformer may be instantiated at different priority levels
(allowing one instance to pre-empt another), global variables should not be used even for
temporary values.

34/216 8182595 Rev C I‘YI

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 37/218

Multicom 4 Writing an MME transformer

It is possible for a single-instance transformer to statically allocate its context structure and
supply a pointer to this global variable. The initialization function for single-instance
transformers should return MME_NOMEWM if the application attempts multiple instantiation.

Note: Any transformer that is not forced to operate as single-instance, through hardware
dependency should be implemented as a multiple -instance transformer. In fact, extensive
use of global variables should be avoided even for hardware transformers that are currently
single instance, because this may limit their utility in future SoC devices that may contain
multiple instances of that hardware.

3.2.3 Termination

MME_TermTransformer_t is called as a result of an application call to
MME_TermTransformer, see Section 2.4: Managing transformer lifetimes on page 21.
MME_TermTransformer_t takes the context parameter described in Section 3.2 to
specify the transformer instance that should be terminated.

MME_TermTransformer_t reverses all the steps performed during initialization. It
releases any hardware resources it is using and frees any memory.

3.3 Querying the capabilities of a transformer

The transformer must implement a function that permits the application to query whether a
transformer meets its requirements, see Section 2.4.1: Querying the capabilities of a
transformer on page 22. This function must be compatible with the function pointer type,
MME_GetTransformerCapability_t, which is an argument of
MME_RegisterTransformer ():

typedef MME_ERROR (*MME_GetTransformerCapability_t) (
MME_TransformerCapability t *capability)

MME_GetTransformerCapability_t is called as a result of an application call to
MME_GetTransformerCapability, see Section 2.4.1 on page 22.

Note: This function pointer is not provided with a context pointer because it is used to describe the
capabilities of the abstract transformer rather than that of a specific transformer instance.

If the capability structure capability, or the transformer-specific parameter block it
contains, is in some way incorrect then MME_GetTransformerCapability_t should
return an error. Otherwise it should populate MME_TransformerCapability_t and, if
applicable its transformer specific parameter block, capability.

The generic information a transformer must provide is its version number, which can be any
32-bit integer, and its preferred input and output data format in four character code
(FOURCC) format - see MME_DataFormat_t on page 86 for more details.

For most transformers, the application knows the size of the parameter block in advance.
Storage must be provided by the application. Such transformers should return an error if the
parameter block is incorrectly sized.

In order to cope with transformer specific parameters of a variable size, the transformer
must provide a means for the application to query how much memory it should provide for
the parameters to be correctly stored.

KYI 8182595 Rev C 35/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595

REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

Writing an MME transformer Multicom 4

3.4

36/216

There are many ways this could be achieved. The recommended approach is to define a
fixed size parameter block that contains the actual size the parameter block is required to
be, and use this to tell the application how much memory to allocate.

The following example shows part of the header file for a transformer that requires a
capability structure of varied size:

enum STExampleInfoSize {
MME_OFFSET_STExampleInfoSize_StructSize,
MME_LENGTH_STExampleInfoSize

#define MME_TYPE_STExampleInfoSize_StructSize U32
Y
typedef MME_GENERIC64 STExampleInfoSize_t[MME_LENGTH_STExampleInfoSize];

enum STExampleInfo {

}

/* can not typedef STExampleInfo since it is of variable size */

The above transformer would be queried from application code in the following way:

MME_ERROR err;
MME_TransformerCapability t capability;
STExampleInfoSize_t query;
MME_GENERIC64 *info;

capability.StructSize = sizeof (MME_TransformerCapability_t);
capability.TransformerInfoSize = sizeof (STExampleInfoSize_t) ;
capability.TransformerInfo_p = &query;

err = MME_GetTransformerCapability ("STExample", &capability);
/* check for errors */

capability.TransformerInfoSize = MME_PARAM (query, STExampleInfoSize_Structsize);
info = malloc (capability.TransformerInfoSize)) ;

capability.TransformerInfo_p = info;

err = MME_GetTransformerCapability ("STExample", &capability);

/* check for errors */

Processing a command

The transformer must implement a function that supports the processing any of the three
types of commands introduces in Section 2.8: Fault detection and recovery on page 28. The
function must be compatible with the function pointer type, MME_ ProcessCommand_t,
which is an argument of MME_RegisterTransformer ():

typedef MME_ERROR (*MME_ProcessCommand_t) (
void *context,
MME_Command_t *commandInfo)

MME_ProcessCommand_t is called as a result of an application call to
MME_SendCommand, see Section 2.7: Issuing commands on page 26.

This function is supplied with the context pointer described in Section 3.2: Managing
transformer lifetimes on page 34. It is also supplied with the command structure
commandInfo, describing the actions requested of the transformer. The command
structure consists of two parts: the incoming command request and the outgoing command
status.

8182595 Rev C I‘YI

page: 38/218

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 39/218

Multicom 4 Writing an MME transformer

The command request portion is filled in by the application before calling
MME_SendCommand and contains incoming parameters and any data buffers relevant to the
command.

MME_Command_t contains a status structure MME_CommandStatus_t that is updated by
MME before and after calling MME_ ProcessCommand_t. During processing only the status
structure parameter block and command identifier contain useful values. The parameter
block is filled in by the transformer in order to pass back state information to the application,
see Section 2.6: Application and transformer specific data on page 26. The command code
is used to uniquely identify a particular command; in particular this identifier is used if ever a
command must be aborted, see Section 3.5: Aborting commands on page 41.

Note: Although the transformer specific parameter block held in the command'’s status structure
should be filled in by the transformer, the status structure itself must be treated by the
transformer as read-only. All fields are updated automatically by MME.

If the command request is malformed in any way then this function should return an error
code. The following list, though not exhaustive, provides a few ways in which a command
can be badly formed:

® Wrong number of input or output buffers

® Incorrectly sized input or output buffers

® Badly formed or incorrectly sized parameter block attached to the command request
°

Incorrectly sized parameter block attached to the command status
MME_CommandStatus_t. (It is not possible for the outgoing parameter block to be
badly formed because they are assumed to be uninitialized data when
MME_ProcessCommand_t is called)

Note: In systems where data buffers can be corrupted during transit, transformers are required to
gracefully handle badly formed input buffers. It is possible to handle this by simply returning
an error, but this often makes it difficult for the application to handle failures. For this reason
it is usually preferable for a transformer to make the best possible attempt to decode the
data and use the transformer specific status parameters to indicate to the application that
the output may be incorrect.

For correctly formed commands, the exact action required by the transformer depends upon
the command code supplied by the application. For this reason, typical implementations of
this command simply examine the command code and call a helper function. For example:

MME_ERROR EXMPL_ProcessCommand (void *ctx, MME_Command_t *cmd)
{
switch (cmd->CmdCode) ({
case MME_ TRANSFORM:
return EXMPL_Transform(ctx, cmd);
case MME_SEND_BUFFERS:
return EXMPL_SendBuffers(ctx, cmd);
case MME_SET_GLOBAL_TRANSFORM_ PARAMS:
return EXMPL_SetParameters (ctx, cmd);
Y

return MME_INVALID_ARGUMENT;
}

Note: Frame based transformers do not usually support the MME_SEND_BUFFERS command so
that value is often omitted from the switch statement.

KYI 8182595 Rev C 37/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595

REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

Writing an MME transformer Multicom 4

Note:

3.4.1

Note:

3.4.2

Note:

38/216

The MME_TRANSFORM command instructs the transformer to perform a data transformation
either on buffers supplied with the command or, for streaming transformers, on buffers sent
using the MME_ SEND_ BUFFERS command. The MME_TRANSFORM command should not
complete until at least a single frame of data has been processed.

If the transformer has the concept of frames and follows the streaming model then the
transformer must be provided with a parameter identifying how many bytes of data should
be processed before the command completes.

The MME_SET_GLOBAL_TRANSFORM_PARAMS command is used to update parameters that
affect all subsequent transforms. Such command typically have very short execution times
since they need only alter a few parts of the context structure prior to returning.

The MME_SEND_BUFFERS command partners with the MME _TRANSFORM command to
supply data buffers to a streaming transformer. This command is discussed in detail in
Section 3.4.3: Streaming and hybrid transformers on page 40.

Communicating with the application

For simple transformers, all communication with the application is managed automatically.
When a command completes its processing, and returns an error code by its processing
function, MME automatically notifies the application that the command has finished
processing.

When a transformer needs to initiate communication with the application, the following
function is used:

MME_ERROR MME_NotifyHost (
MME_Event_t event,
MME_Command_t* commandInfo,
MME_ERROR errorCode)

The circumstances when this function is required are identified by the event type:

® MME_COMMAND_COMPLETED_EVT, used to mark a deferred command (see
Section 3.4.2: Deferred commands on page 38) as completed,

® MME DATA UNDERFLOW_ EVT and MME_NOT_ENOUGH_MEMORY_ EVT, used by
streaming transformers (see Section : Underflow and insufficient memory handling on
page 40) to indicate to the application that they have have exhausted either input or
output buffers respecitvely.

commandInfo is the pointer originally supplied to the processing function while the error
code is the value that the implementation will store in the error field of the command status
prior to making any callbacks.

It is not safe to call MME_NotifyHost from an interrupt handler.

Deferred commands

Deferred commands provide a means for a transformer to delegate some or all of its
functionality to an asynchronous processing device such as a hardware accelerator.

A transformer indicates that it has deferred a command through a special error code,
MME_TRANSFORM_DEFERRED. This return code indicates to MME that the command has
not completed but that no further processing can be performed by the processor.

Since the command has not completed no callback will take place on the host after the
processing function returns MME_TRANSFORM_DEFERRED. The host can be notified

8182595 Rev C I‘YI

page: 40/218

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 41/218

Multicom 4 Writing an MME transformer

explicitly by the transformer code through calls to MME_NotifyHost described in
MME_NotifyHost on page 63.

Before returning MME_ TRANSFORM_DEFERRED the transformer must ensure the command
will complete at some point in the future. This is achieved by carrying out the following
actions.

® Remember the MME_Command_t * pointer passed into the processing function. This
pointer is required when the time comes to notify the host processor that processing is
complete.

® Set up an asynchronous event that will cause the command to complete at some point
in the future. This is typically achieved by configuring an interrupt handler/task pair that
will be signaled when the hardware accelerator has completed its work. A task will be
required because it is not permitted to call any of the MME API functions from an
interrupt handler.

If an MME_SEND_BUFFERS command returns MME_ SUCCESS, it is deferred just as if it had
returned MME_ TRANSFORM_DEFERRED. This is because it is incorrect for a
MME_SEND_BUFFERS command to complete successfully without asynchronous processing
by a matching MME_TRANSFORM command. In this case there is no need for the transformer
to configure an asynchronous event because command execution by the MME already
provides this.

Pipelined transformers

A pipelined transformer is a special case of a deferred transformer. Pipelined transformers
avoid having to setup an asynchronous handler, by checking the state of the hardware
accelerator from a subsequent transform command. This is broadly analogous to the classic
fetch-decode-execute pipeline common in microprocessor architectures.

The following example shows the management code for a simple two-stage pipelined
transformer.

MME_ERROR Pipelined_Transform(void *ctx, MME_Command_t *cmd)

{
MME_ERROR errl, err2;

/* Do the first part of the transform in software */
errl = Pipelined_FirstHalfInSoftware(ctx, cmd);

if (ctx->lastCmd) {
/* There is a deferred command - wait for it to complete */
/* err2 1s the MME_ERROR code to set in the command’s status */
err2 = Pipelined WaitForPreviousSecondHalf (ctx, ctx>lastCmd) ;
MME_NotifyHost (MME_COMMAND_COMPLETED_EVT, ctx->lastCmd, err2);

if (MME_TRANSFORM_DEFERRED == errl) {
/* The first part is in a deferred state - remember this */
ctx->lastCmd = cmd;
/* this function returns MME_TRANSFORM_DEFERRED if successful */
errl = Pipelined_SetupSecondHalf (ctx, cmd) ;

} else {
ctx->lastCmd = NULL;

return errl;

}

Pipelined transformers block execution for the previous stages of the pipeline to complete. If
the software side is running ahead of the hardware side then the transform function blocks

KYI 8182595 Rev C 39/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595

REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

Writing an MME transformer Multicom 4

Note:

3.4.3

Note:

Note:

40/216

and at this point, execution of all commands on the current processor, of the same priority,
halt. In the above example Pipelined_WaitForPreviousSecondHalf blocks, using an
operating system primitive, until the hardware side has completed.

Poorly-tuned pipelined transformers can be harmful to processor bandwidth. Pipelined
transformers are therefore best implemented only for single purpose companion
processors.

Pipelined_WaitForPreviousSecondHalf must not busy wait as this will disrupt
processing at lower priorities.

Streaming and hybrid transformers

Streaming and hybrid transformers are required to support the MME_ SEND_BUFFERS
command since this is how their data buffers are delivered.

Like all other commands the MME_ SEND_BUFFERS command should return an error code if
the command structure is in some way invalid. It is also permissible to return an error if the
transformer instance’s buffer queue is full. If the processing function returns an error for a
send buffers command the application will be immediately notified.

Otherwise, on receipt of an MME_ SEND_BUFFERS command a streaming transformer must
store the command within its context structure ready for it to be used by the corresponding
MME_TRANSFORM command.

The MME_SEND_BUFFERS command interrupts the currently executing command in order to
deliver the buffers. The implementation of the send buffers command should therefore
perform the smallest amount of work possible in order to minimize the cost of this
interruption. Examination of data buffers and chaining of scatter pages are best left to the
MME_TRANSFORM command.

After storing the MME_ SEND_BUFFERS command in the context structure the processing
function should return MME_ SUCCESS. At this point the command will be deferred until it is
marked as completed through execution of a MME_TRANSFORM command.

When the MME_ TRANSFORM command, by calling MME_NotifyHost, marks a
MME_SEND_BUFFERS command as completed, it guarantees that it will no longer access
any part of that command, including its data buffers.

Underflow and insufficient memory handling

When a streaming transformer has insufficient input data to continue, it is required to emit
MME_DATA_ UNDERFLOW_EVT by using MME_NotifyHost. Similarly if there is insufficient
output data, it is required to emit MME_NOT_ENOUGH_MEMORY_EVT.

In both cases, after emitting an event, the transformer must then use an operating system
primitive such as a semaphore to suspend execution of the current thread.

The transformer must not busy wait as this will disrupt processing at lower priorities.

When an MME_SEND_BUFFERS command is received that permits the processing of the
command to continue, the transformer should use the operating system primitive to wake up
the previously blocked thread.

J

8182595 Rev C

page: 42/218

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

Multicom 4

Writing an MME transformer

3.5

Aborting commands

The transformer must implement a function that permits commands to be aborted. This
function must be compatible with the function pointer type, MME_AbortCommand_t, which
is an argument of MME_RegisterTransformer ():

typedef MME_ERROR (*MME_AbortCommand_t) (
void *context,
MME_CommandId_t commandId)

MME_AbortCommand_t is called as a result of an application call to MME_Abor tCommand,
see Section 2.7.1: Aborting commands on page 28.

A call to this function is not a demand to abort the command but a request that the
transformer may, in certain circumstances, choose to ignore. If the transformer is not able to
abort the command it should return MME_ INVALID_ARGUMENT.

MME never attempts to terminate a transformer with outstanding commands. Any command
that is unable to complete without some further action being performed on the transformer
must support aborts. Some examples of commands that are required to support abortion
include:

® allMME_SEND_BUFFERS commands
® commands blocked after data underflow or overflow
® pipelined commands

Commands are marked as aborted by one of the following methods:
® Dby returning MME_SUCCESS from MME_AbortCommand_t

® by calling MME_NotifyHost with the event code MME_COMMAND_EVT and the error
code MME_COMMAND_ABORTED

® Dby returning MME_COMMAND_ABORTED from MME_ Process_Command_t.

The call to MME_NotifyHost can be made from any thread, including the abort function,
the processing function or from asynchronous threads owned by a deferred transformer.

page: 43/218

Note: When aborting a command using any of the above methods, the transformer guarantees
that the following conditions are met.
® No further execution time is spent on the command.
® No further use is made of any part of the MME_Command_t structure, including data
buffers. This means that no further calls to MME_Not1ifyHost are made.
® No further attempt is made to mark the command aborted. Thus if
MME_AbortCommand_t calls MME_NotifyHost or expects the currently executing
command to read from the command structure or to return any value except
MME_TRANSFORM_DEFERRED then the abort command must itself return
MME_TRANSFORM_DEFERRED.
Thus MME_AbortCommand_t should return MME_SUCCESS only if the command has
already been aborted and the host has not been notified by another means.
Ay 8182595 Rev C 41/216
©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595

REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 44/218

Writing an MME transformer Multicom 4

3.6

Note:

Note:

3.7

Note:

42/216

Scheduling and re-entrancy

MME utilizes multiple threads and it is important that transformer functions are written in
such a manner that thread safety is maintained.

Neither initialization nor termination have any thread safety issues. The functions are not re-
entered, nor will any other transformer interface function be called during these operations.

It is a pre-condition of the termination function that all outstanding commands complete, and
this is assured by MME.

Similarly calls to MME_GetTransformerCapability_t (see Section 3.3 on page 35) are
serialized.

For a single instantiated transformer, up to three threads can operate over the same context
structure at the same time. These are:

® An execution thread that calls the processing function with a command code of either
MME_TRANSFORM Of MME_ SET_GLOBAL_TRANSFORM_PARAMS.

® A manager thread that calls the processing function with a command code of
MME_SEND_BUFFERS.

® A manager thread that calls the abort function.

In summary the MME_ ProcessCommand_t can be re-entered but not with the same
command code, while MME_AbortCommand_t cannot be re-entered. It is a requirement
however, for transformers to protect access to any variable or list that is manipulated by
multiple threads.

Transformers that do not support MME_SEND_BUFFERS Or MME_AbortCommand_t are
implicitly thread-safe.

Parameter passing

Many of the MME functions take transformer specific parameter blocks specified in MME
structures as MME_GenericParams_t, see Section 2.6: Application and transformer
specific data on page 26. In each case the parameter block is described using a pointer to a
generic 64-bit type and a size in bytes. Transformers that require parameters to correctly
process their input typically specify parameters in a header file shared by the application.

It is not possible for a parameter block to contain pointers to other data because it may not
be possible to dereference these pointers on other processors.

On systems with identical endianness, the parameter block is presented byte for byte
identically as it passes between the application and the transformer. However on mixed
endian systems the parameter block will be treated as an array of 64-bit quantities each of
which will be byte swapped in 64-bit units. For example, the 64-bit hexadecimal integer
0x0011 2233 4455 6677 would after swapping become 0x7766 5544 3322 1100 if it were
examined on the originating processor.

Itis the transformer’s responsibility to define its parameter block in such a way that it may be
safely passed between processors of mixed endianness. The way MME handles mixed
endian machines implies that the parameter block should be implemented as an array of 64-
bit entities.

MME provides a number of macros that can be used to assist the transformer and
application author to access data contained in such an array in a convenient but endian
neutral manner. These macros use a combination of constants and C preprocessor string

8182595 Rev C I‘YI

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 45/218

Multicom 4 Writing an MME transformer

concatenation in order to provide access, both named and typed, to elements of the
parameter array.

Note: Existing transformers and their applications may continue to pass parameters as a
sequence of bytes instead of an array of 64-bit entities. This is typically achieved by
mapping a C structure as a parameter block. This approach is not portable since it relies
upon matching compiler behavior and endianness on all processors. It is not recommended
that new transformers pass their parameters in this manner.

3.7.1 Data representation

The macros provided by MME to store data into an array of 64-bit entities, use a specific
data representation. This representation allows 8, 16, 32 and 64-bit two’s complement
integers to be directly written by the CPU without any manipulation. Similarly, IEEE floating
point numbers are typically stored using their normal bit pattern.

Table 4 shows the same parameter array elements represented in both big endian and little
endian formats. The MME implementation will automatically convert between these forms
when a parameter block is copied between processors of differing endianness

Table 4. Data representation - endianness

Size Little endian Big endian

8 bit o0 _ _ _ _ ___ | ______ 0
16 bit o1 _ _ _ __-_ |\ ____"_ 10
32 bit 0123 _ _ _ _ ____3210
64 bit 01234567 76543210

The macros are aware of the size of the object they are storing allowing the base address of
the big endian values to be automatically calculated (at compile time).

3.7.2 Mapping application data structures into MME parameters

Three forms of parameter are managed by MME to support mapping of application data
structures to MME parameters. These are individual, array and parameter array. They are
used to pass individual data elements, arrays of elements and structures within structures
respectively.

The following structure is used as an example:
struct MyParams {
unsigned char FooBar;
GiﬁT32 TeePipes[10];
éééuct MySubList {

char a;

};

The field FooBar is passed as an individual parameter, the array TeePipes as an array
parameter and the structure MySubList as a parameter array.

KYI 8182595 Rev C 43/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595

REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

Writing an MME transformer Multicom 4

Note:

44/216

The descriptions in Section through to Section use enumerated constants to specify the
offset of each entry within the MME array of 64-bit parameters. The name of an entry in an
enumeration is prefixed with MME_OFFSET_, for example MME_OFFSET_FooBar.

The type of an entry is defined with a #define directive and prefixed with MME_TYPE_, for
example MME_TYPE_FooBar.

Macros are used to access the value of an entry in the MME array.

Individual parameters

An individual parameter is a single typed element of the MME parameter array. It is defined
by an offset into the parameter array together with the type information for that parameter.

To define a parameter, FooBar, a constant, MME_OFFSET_FooBar is required to describe
the offset into the parameter array at which FooBar will be found. Similarly a macro
MME_TYPE_FooBar is required to describe the type of the parameter.

MME_OFFSET_FooBar can be a preprocessor macro though normally, because is it merely
an integer, it is an enumerated constant.

MME_TYPE_FooBar must be a preprocessor macro because it contains a sequence of C
tokens.

For example the following would define a unsigned character parameter, FooBar, at offset
one.

enum {
MME_OFFSET_SomeValueAtOffsetZero,
MME_OFFSET_FooBar,

#define MME_TYPE_FooBar unsigned char
};

/* usage example - assign variable 'c’ the value of the */
/* parameter FooBar */
unsigned char ¢ = MME_PARAM(list, FooBar);

Array parameters

An array parameter is defined in the same way as a individual parameter but is immediately
followed by unused locations within the array. This allows the array parameter and an index
to be used to extract numbered elements.

Shown below is a ten element array parameter, TeePipes, followed by an normal
parameter, Flange.

The array nature of TeePipes is reflected in the offset of the subsequent parameter,
Flange.

J

8182595 Rev C

page: 46/218

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 47/218

Multicom 4 Writing an MME transformer

enum {
MME_OFFSET_TeePipes,
MME_OFFSET_Flange = MME_OFFSET_TeePipes + 10,

#define MME_TYPE_TeePipes UINT32
Y
/* usage example - assign variable 'x’ the value of the */

/* fifth element of the parameter TeePipes */
uint32 x = MME_INDEXED_PARAM(list, TeePipes, 5);

Parameter arrays as parameters

It is quite possible for a parameter array to wholly contain another parameter array to
facilitate the mapping of structures within structures into MME parameters. In this case the
parameter is defined only by its offset since its type is known to be MME_GenericParam_t.
Like array parameters the length of the parameter array is defined by the offset of the
subsequent element.

For example:

enum {

MME_OFFSET_MySublist,

MME_OFFSET_NextParameter = MME_OFFSET_MySubList +
MME_LENGTH (SubList) ,

Y

/* usage example - assign variable 's’ to the pointer */
/* MySubList, an element of the parameter list */
MME_GENERIC64 *s = MME_PARAM_SUBLIST(list, MySubList);

Recording the length of a parameter array

Once all the offsets for a particular parameter array have been defined, the length of the
array must be defined in a standard form so that it can be returned by the MME_ LENGTH
macro. This symbol is derived from the name of the parameter array.

For example:

enum SimpleIdx {
MME_OFFSET_AnInteger,

MME_LENGTH_Simple

#define MME_TYPE_AnInteger int
};

/* usage example */
1 = MME_LENGTH (Simple) ;

KYI 8182595 Rev C 45/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 48/218

Writing an MME transformer Multicom 4

3.7.3 Namespace management

The names of elements of all parameter arrays and their sub-lists occupy a single shared
namespace. For this reason care must be taken to choose parameter names such that
independent transformers do not interfere with each other. This chapter provides guidelines
on the selection of appropriate names.

Naming parameter arrays
All parameter arrays must have a unique name. To ensure this, it is recommended, to divide
the name of the parameter into the following three components:

1. A company or division name, for example ‘ST'. This divides the namespace and
radically reduces the chance of namespace collision.

2. Purpose or role of the transformer (such as Ac3Decoder or Mixer).

3. The operation to which this parameter list is targeted. Table 5: Recommended
postfixes for parameter array names contains guidance for standard MME operations.

Table 5. Recommended postfixes for parameter array names

Operation Postfix

MME_GetTransformerCapability () Info

Init, or Global if the initialization parameters

MME_InitTransformer () .
are not distinict.

MME_ SendCommand ()
[MME_SET_GLOBAL_TRANSFORM_PARAMS and [Global/GlobalStatus
reply]

MME_ SendCommand ()
[MME_TRANSFORM and reply]

Transform/TransformStatus

MME_SendCommand ()

Send/SendStatus
[MME_SEND_BUFFERS and reply]

3.7.4 An example

This example maps the following C structure into MME parameters:

struct STExampleTransform {
U32 STExampleTransformNormal;
U8 STExampleTransformArray[10];

struct STExampleSub {
U32 STExampleSubNormal ;
}i
}i
To copy the data listed above as an MME parameter array the transformer would add the
following definitions to its header file:

/* As a parameter sub list this 1list does not use the standard */
/* postfixes from the table above */

enum STExampleSub {
MME_OFFSET_STExampleSubNormal,

MME_LENGTH_STExampleSub

J

46/216 8182595 Rev C

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 49/218

Multicom 4 Writing an MME transformer

#define MME_TYPE_STExampleSubNormal U32
Y

typedef MME_GenericParams_t
MME_STExampleSub_t [MME_LENGTH (STExampleSub)] ;

enum STExampleTransform {
MME_OFFSET_STExampleTransformNormal,
MME_OFFSET_STExampleTransformArray,
MME_OFFSET_STExampleTransformSublist =
MME_OFFSET_STExampleTransformArray + 10,

MME_LENGTH_STExampleTransform =
MME_OFFSET_STExampleTransformSublist + MME_LENGTH (STExampleSub)

#define MME_TYPE_STExampleTransformNormal U32

#define MME_TYPE_STExampleTransformArray U8

/* no need for MME_TYPE STExampleTransformSublist */

}i

typedef MME_GENERIC64
MME_STExampleTransform_t [MME_LENGTH (STExampleTransform)];

The following example demonstrates how an application would use the parameter array
above. It is assumed that the transformers header file will be included by the application.

/* Send some parameters with a command /*

MME_Command_t command = { sizeof (MME_Command_t),
MME_SET_GLOBALTRANSFORM_PARAMS,
MME_COMMAND_END_RETURN_NOTIFY,

}i

MME_STExampleTransform_t transformParams;

MME_STExampleTransform_ t transformSubParams;

/* Set the individual element to 45 */
MME_PARAM (transformParams, STExampleTransformNormal) = 45;

/* Set the array element at index 2 to 70 */
MME_INDEX_ PARAM (transformParams, STExampleTransformArray, 2) = 70;

/* Set the sub-structure element to 8 */
MME_PARAM (transformSubParams, STExampleSubNormal) = 8;

/* Setup the substructure within the parameter structure */
MME_PARAM_SUBLIST (transformParams, STExampleTransformSublist, transformSubParams) ;

/* Specify the parameters with the MME_Command_t structure */
command.Params_p = &transformParams;

command.ParamSize = MME_LENGTH_BYTES (STExampleTransform) ;

MME_ SendCommand (handle, &command) ;

K7[8182595 Rev C 47/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C

MME API

CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

Multicom 4

4 MM

E API

This chapter describes the MME API in terms of its functions, constants, enums and types.

4.1 Function definitions

This section provides detailed descriptions of the MME functions. The functions are listed in
alphabetical order.

MME_AbortCommand

Definition:

Arguments:

Returns:

Description:

Comments:

48/216

#include <mme.h>

MME_ERROR MME_AbortCommand (
MME_TransformerHandle_t Handle,

MME_CommandId_t CmdId)
Handle Handle of the targeted transformer.
CmdId Command identity of the command to abort.
MME_SUCCESS An abort request has been submitted - this does

not imply the command has been aborted.
MME_DRIVER_NOT INITIALIZED The MME driver has not been initialized.
MME_INVALID_ HANDLE The transformer handle is invalid.

MME_INVALID_ARGUMENT The cmdId is invalid.

Attempt to abort a command that has been submitted to a transformer.

The behavior of this function is transformer and implementation specific. Commands
can always be aborted when in the MME_COMMAND_ PENDING state, that is before
being processed. However, depending on their implementation some transformers
may also accept to abort command during their processing
(MME_COMMAND_EXECUTING state). When a command has been aborted, the Error
field of the MME_CommandStatus_t is set to MME_COMMAND_ABORTED. The
callback function on the host is called when the command is successfully aborted.

Call type: non-blocking function call (the operation completes when the callback
function has been called).

J

8182595 Rev C

Abort command submitted to transformer

page: 50/218

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C

Multicom 4

CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

MME API

MME_ AllocDataBuffer

Definition:

Arguments:

Returns:

Description:

Comments:

See also:

#include <mme.h>

Allocate MME data buffer

MME_ERROR MME_AllocDataBuffer (
MME_TransformerHandle_t Handle,

MME_UINT

Size,

MME_AllocationFlags_t Flags,
MME_DataBuffer_t **DataBuffer_p)

Handle
Size

Flags

DataBuffer_p

MME_SUCCESS
MME_DRIVER_NOT_INITIALIZED

MME_NOMEM

MME_TINVALID_HANDLE

MME_TINVALID_ARGUMENT

Allocate a new MME data buffer.

Handle of the targeted transformer.
Number of bytes to allocate.

Specify special requirements of the memory
allocated, see MME_AllocationFlags_t on
page 76.

Pointer to a pointer to an allocated data buffer
structure to be populated.

The operation completed correctly.
The MME driver has not been initialized.

The memory required to complete this command
is not available.

The transformer handle is invalid.

Flags or DataBuffer_p is invalid.

This command allocates memory that can be optimally communicated to the
transformer indicated by Handle. Flags can be used to specify additional useful
properties required of the allocated memory. For example, its cache ability or whether

it is required to be contiguous.
Call type: blocking function call.
MME_FreeDataBuffer

8182595 Rev C 49/216

page: 51/218

©Copyright STMicroelectronics

N/A

Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 52/218

MME API Multicom 4
MME_DebugFlags Set MME debug logging flags
Definition: #include <mme.h>

MME_ERROR MME_DebugFlags (MME_DBG_FLAGS Flags)

Arguments:
Flags Bitmask of debugging flags. See
MME_DBG_FLAGS on page 87.
Returns:
MME_SUCCESS The debug flags were successfully set.
MME_DRIVER_NOT_INITIALIZED The MME driver has not been initialized.
MME_ICS_ERROR An ICS subsystem error occurred.
Description: Sets the MME debugging flags to the supplied bitmask value.
50/216 8182595 Rev C 1S7

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 53/218

Multicom 4 MME API
MME_DeregisterMemory Deregister memory region
Definition: #include <mme.h>

MME_ERROR MME_DeregisterMemory (MME_MemoryHandle_t Handle)

Arguments:
Handle Handle of the memory region registered with
MME_RegisterMemory.
Returns:
MME_SUCCESS The memory region was successfully
deregistered.
MME_DRIVER_NOT_INITIALIZED The MME driver has not been initialized.
MME_INVALID_HANDLE The handle does not refer to an existing
memory region registration.
MME_ICS_ERROR An ICS subsystem error occurred.
Description: Deregister a memory region that was previously registered with
MME_RegisterMemory. specific transformer.
Comments: Call type: blocking function call.
See also: MME_RegisterMemory
Ay 8182595 Rev C 51/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 54/218

MME API Multicom 4
MME_DeregisterTransformer Deregister transformer
Definition: #include <mme.h>

MME_ERROR MME_DeregisterTransformer (const char* name)

Arguments:
name The name of a transformer that has been
registered with
MME_RegisterTransformer ().
Returns:
MME_SUCCESS The transformer has been successfully
deregistered.
MME_INVALID_ARGUMENT The transformer name is not registered.
MME_DRIVER_NOT_ INITIALIZED The MME driver has not been initialized.
Description: Deregister a transformer, that was previously registered on the CPU, from which the
call is made.
Comments: Call type: blocking function call.
See also: MME_RegisterTransformer
Section 2.3.3: Example on page 21
52/216 8182595 Rev C I‘YI

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 55/218
Multicom 4 MME API
MME_ErrorStr Returns an MME error string
Definition: #include <mme.h>

const char * MME_ErrorStr (MME_ERROR err)
Arguments:
err An MME_ERROR error code.
Returns: A pointer to the corresponding MME error string.
Errors: None
Context: Callable from task and interrupt context. Can be called before MME_TInit ().
Description: MME_ErrorStr () returns a pointer to the corresponding MME error string based on
the supplied err code. This function is a useful way to display/log a text string
describing the MME error code when an error occurs.
err should be a valid MME error code as returned by an MME API function.
Ay 8182595 Rev C 53/216
©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011
MME API Multicom 4
MME_FreeDataBuffer Release MME data buffer
Definition: #include <mme.h>
MME_ERROR MME_FreeDataBuffer (
MME_DataBuffer_t *DataBuffer_p)
Arguments:
DataBuffer p Pointer to an allocated data buffer structure to
be freed.
Returns:
MME_SUCCESS The operation completed correctly.
MME_DRIVER_NOT_INITIALIZED The MME driver has not been initialized.
MME_ INVALID_ARGUMENT DataBuffer_p is invalid.
Description: Release memory previously allocated with MME_AllocDataBuffer ().
This command releases memory previously allocated with
MME_AllocDataBuffer (). The behavior is undefined if the memory was not
previously allocated by the MME API or if pointers within the structure have been
modified.
Comments: Call type: blocking function call.
See also: MME_AllocDataBuffer
54/216 8182595 Rev C 1S7]

page: 56/218

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C

Multicom 4

CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 57/218

MME API

MME_GetTransformerCapability Return details of transformer capability

Definition:

Arguments:

Returns:

Description:

Comments:

See also:

#include <mme.h>

MME_ERROR MME_GetTransformerCapability (
const char *TransformerName,
MME_TransformerCapability t

*TransformerCapability p)

TransformerName Name of the transformer whose capability is to be
queried.

TransformerCapability_p Pointer to an allocated
MME_TransformerCapability_t structure
that will be filled with the capability of the
corresponding transformer.

MME_SUCCESS The operation completed correctly.
MME_DRIVER_NOT_INITIALIZED The MME driver has not been initialized.
MME_UNKNOWN_TRANSFORMER No transformer of the specified name exists.
MME_INVALID_ARGUMENT TransformerCapability_p is invalid.
Return capability and requirement for a given transformer type.

The following fields of the MME_TransformerCapability. t structure must be
initialized prior to calling this function: StructsSize, TransformerInfoSize and
TransformerInfo_p. All subsequent fields will be filled in by MME as a result of
the call.

Call type: blocking function call.

MME_ TransformerCapability t

8182595 Rev C 55/216

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 58/218
MME API Multicom 4
MME_INDEXED_PARAM Extract indexed parameter
Definition: #include <mme.h>

#define MME_INDEXED_PARAM (params, name, index)
Arguments:
params Pointer to a parameter array of type
MME_GenericParams_t.
name Name of the parameter to be extracted from the
array.
index Index of the parameter to extract.
Returns: An 1value (an object that can be assigned to) whose type is selected by the named
parameter.
Description: Extract a indexed named parameter from a parameter array. This macro uses other
special purpose macros or named constants to process the name.
For example, the following macros define an indexed parameter name called
ThisIsIndexed.
enum {
MME_OFFSET_ThisIsIndexed = 2,
#define MME_TYPE_ThisIsIndexed U32
}
This parameter can be extracted as follows:
MME_INDEXED_PARAM (params, ThisIsIndexed, 0) = 0xAC3;
MME_INDEXED_PARAM (params, ThisIsIndexed, 1) = 0xDDD;
See also: MME_PARAM
MME_LENGTH
MME_PARAM_SUBLIST
56/216 8182595 Rev C 1S7]
©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 59/218

Multicom 4 MME API
MME_ Init Initialize the MME infrastructure
Definition: #include <mme.h>

MME_ERROR MME_TInit (void)

Arguments: None
Returns:
MME_SUCCESS The operation completed correctly.
MME_DRIVER_NOT_INITIALIZED The MME driver could not be initialized
because underlying resources were not
initialized yet.

MME_DRIVER_ALREADY_INITIALIZED MME_Init () has been called already.

MME_NOMEM The memory required to complete this
command is not available.

Description: Initialize the MME infrastructure. This function must be called prior to calling any other
MME functions. It must be called at least once on each processor and by each Linux
user mode process. Once initialized further calls return
MME_DRIVER_ALREADY_ INITIALIZED.

See also: MME_InitTransformer
MME_Term
KYI 8182595 Rev C 57/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C

MME API

CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

Multicom 4

MME_ InitTra

Definition:

Arguments:

Returns:

Description:

Comments:

See also:

58/216

nsformer

#include <mme.h>

Initialize an instance of a transformer

MME_ERROR MME_InitTransformer (

const char

*Name,

MME_TransformerInitParams_t *Params_p,
MME_TransformerHandle_t *Handle_p)

Name

Params_p

Handle_p

MME_SUCCESS
MME_DRIVER_NOT_INITIALIZED

MME_NOMEM

MME_UNKNOWN_TRANSFORMER

MME_TINVALID_ARGUMENT

Name of the transformer registered with
MME_RegisterTransformer.

Pointer to an allocated
MME_TransformerInitParams_t that
contains the parameters with which the
transformer will be initialized.

Pointer to an MME_TransformerHandle t
that will contain the handle of the initialized
transformer.

The device has been successfully initialized.
The MME driver has not been initialized.

The memory required to complete this
command is not available.

No transformer of the specified name exists.

Params_p Or Handle_p is invalid.

Creates and initializes an instance of a specific transformer on a CPU.

The name argument must not be longer than MME_MAX_TRANSFORMER_NAME bytes.
The error code MME_INVALID_ARGUMENT Wwill be returned if the name is too long.

The name of the transformer implicitly describes the type of that transformer, for
example “STAC3DecoderMacro”. This can be confirmed by using

MME_GetTransformerCapability () to examine the capability of transformer if

required.

If the host has to synchronize with transformer registration on a companion, this
function should be called iteratively until MME_SUCCESS is returned.

MME_TInit must be called prior to the MME_InitTransformer function.

Call type: blocking function call.
MME_Init

MME_TermTransformer

8182595 Rev C

J

page: 60/218

©Copyright STMicroelectronics

N/A

Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 61/218
Multicom 4 MME API
MME_LENGTH Return the length of a parameter array
Definition: #include <mme.h>

#define MME_LENGTH (name)
Arguments:
name Name of the parameter array.
Returns: The length of the named parameter array.
Description: Find the length of a named parameter array.
This macro uses other special purpose macros to process the name.
For example, the following macros define a parameter name called
ThisIsAGlobalName.
#define MME_PARAMS_LENGTH_ThreeParameters 3
The macro should be used as follows:
MME_GenericParams_t params[MME_LENGTH (ThreeParameters)];
MME_PARAMS (params, ParamOne) = 1;
MME_PARAMS (params, ParamTwo) = 2;
MME_PARAMS (params, ParamThree) = 3;
See also: MME_INDEXED_PARAM
MME_PARAM
MME_PARAM_SUBLIST
MME_LENGTH_BYTES
‘ﬁ 8182595 Rev C 59/216

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 62/218

MME API Multicom 4
MME_LENGTH_BYTES Return the length of a parameter array in bytes
Definition: #include <mme.h>

#define MME_LENGTH_BYTES (name)

Arguments:
name Name of the parameter array.
Description: Find the length of a named parameter array in bytes.
Returns: The length of the named parameter array in bytes.
See also: MME_INDEXED_PARAM
MME_LENGTH
MME_PARAM
MME_PARAM_SUBLIST
60/216 8182595 Rev C ﬁ

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C

Multicom 4

CONTROLLED DOCUMENT (Check latest revision)

DATE 28-FEB-2011

MME API

MME_ModifyTuneable

Definition:

Arguments:

Returns:

Description:

#include <mme.h>

Modify system-wide configuration values

MME_ERROR MME_ModifyTuneable (MME_tunable_t key,

MME_UNIT value)

key

value

MME_TINVALID_ARGUMENT

Specify the tuneable value to be modified.

The new value for the tuneable.

The supplied key is invalid or not support on this

operating system.

MME_SUCCESS

The tuneable has been successful updated.

Modify tuneable system-wide configuration values. MME uses sensible default values
for parameters such as thread priority, however, some users need to tune such
values to optimize thread interactions. Many values have been made tuneable to
allow users to modify their systems without recompiling MME. This call alters a single
tuneable parameter selected by key, which can be one of the values in Table 6:

Table 6.Tuneable values for MME parameters

value(")

Description

MME_TUNEABLE_BUFFER_POOL_SIZE

Modify the default size of the MME data
buffer pool as used by
MME_AllocDataBuffer

MME_TUNEABLE_MANAGER_THREAD_
PRIORITY

Tune the priority of the MME manager
thread. This thread is responsible for
administrative operations such as
responding to:
MME_GetTransformerCapability and
MME_InitTransformer

This should have a high priority to prevent
background batch processes (such as
audio encode) from interfering with
transformer creation.

MME_TUNEABLE_TRANSFORMER_TIMEOUT

Timeout period in microseconds before a
transformer administration operation returns
an error.

MME_TUNEABLE_TRANSFORMER_THREAD__
PRIORITY

Tune the priority of the MME transformer
thread. This thread is responsible for
receiving MME_ SEND_BUFFERS commands,
together with requests to abort the current
function or terminate the transformer.

This should have a priority greater than or

equal to the highest execution loop priority.

8182595 Rev C

61/216

page: 63/218

©Copyright STMicroelectronics

N/A

Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011
MME API Multicom 4
Table 6.Tuneable values for MME parameters (continued)
Value(" Description
MME_TUNEABLE_EXECUTION_LOOP_HIGHEST | Tune the priority of each of the execution
_PRIORITY loop threads. The execution loops are
MME TUNEABLE EXECUTION LOOP ABOVE responsible for performing transform
— - - - — | requests and altering global parameters. No
NORNAL_PRIORITY . . "
execution loop should have a higher priority
MME_TUNEABLE_ EXECUTION_LOOP_NORNAL_ |than the manager or transformer threads.
PRIORITY The priorities of the execution loops should
be such that
MME_TUNEABLE_EXECUTTON_LOOP_BELOW_ |yvp pUNEABLE EXECUTION. LOOP._
NORNAL_PRIORITY HIGHEST_ PRIORITY has the highest
priority and
MME_TUNEABLE_EXECUTION_LOOP_LOWEST_ ||\ mUNEABLE EXECUTION. LOOP._
PRIORITY LOWEST_PRIORITY has the lowest.
1. Value interpreted as an OS priority level)
Unlike most MME calls it is possible to modify tuneables before the MME API has
been initialized.
Note: Most tuneables do not affect behavior once MME has been initialized and hence they
should modified before calling MME,_Init.
62/216 8182595 Rev C 1S7]

page: 64/218

©Copyright STMicroelectronics

N/A

Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 65/218

Multicom 4 MME API
MME_NotifyHost Notify host that transformer has generated an event
Definition: #include <mme.h>

MME_ERROR MME_NotifyHost (MME_Event_t event,
MME_Command_t *commandInfo,

MME_ERROR errorCode)
Arguments:
event The event that should be passed to the host
callback. See MME_NotifyHost description.
commandInfo The MME_Command_ t* passed into the
transformer function
MME_ProcessCommand_ t.
errorCode The error state of the command.
Returns:
MME_SUCCESS The host has been notified.
MME_INVALID_ARGUMENT An argument is invalid.
MME DRIVER NOT_ INITIALIZED The MME driver has not been initialized.
Description: Informs the host that the transformer has generated an event.
This function must not be called from an interrupt handler.
The event argument can be one of the events listed in MME_Event_t on page 90.
This call will cause the application-supplied callback function on the host to be called
with the its event parameter set to the value of event.
Comments: Call type: non-blocking function call.
ﬁ 8182595 Rev C 63/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 66/218
MME API Multicom 4
MME_PARAM Extract named parameter
Definition: #include <mme.h>

#define MME_PARAM (params, name)
Arguments:
params Pointer to a parameter array of type
MME_GenericParams_t.
name Name of the parameter to be extracted from the
array.
Returns: An lvalue (an object that can be assigned to) whose type is selected by the named
parameter.
Description: Extract a named parameter from a parameter array.
This macros uses other special purpose macros or named constants to process the
name.
For example, the following macros define a parameter name called
ThisIsAGlobalName.
enum {
MME_OFFSET_ThisIsAGlobalName = 2,
#define MME_TYPE_ThisIsAGlobalName U32
}
This parameter can be extracted as follows:
MME_PARAM (params, ThisIsAGlobalName) = 0xAC3;
printf (*%d\n”, MME_PARAM (params, ThisIsAGlobalName)) ;
See also: MME_INDEXED_PARAM
MME_PARAM_SUBLIST
MME_LENGTH
64/216 8182595 Rev C 1S7]

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 67/218
Multicom 4 MME API
MME_PARAM_SUBLIST Extract named parameter sub-array
Definition: #include <mme.h>

#define MME_PARAM_SUBLIST (params, name)
Arguments:
params Pointer to a parameter array of type
MME_GenericParams_t.
name Name of the parameter to be extracted from the
array.
Returns: A pointer to a sub-list of parameters (has type MME_GenericParams_t).
Description: Extract a named parameter sub-array from a parameter array.
This macro uses other special purpose macros or named constants to process the
name.
For example, the following macros define a parameter name called
ThisIsASublist.
enum {
MME_OFFSET_ThisIsASublist = 2,
}
This parameter can be extracted as follows:
sublist = MME_PARAM_SUBLIST (params, ThisIsASublist);
MME_PARAM (sublist, SomeParameter) = 0xAC3;
Returns: A pointer to a sub-list of parameters (has type MME_GenericParams_t).
See also: MME_PARAM
MME_INDEXED_PARAM
MME_LENGTH
Ay 8182595 Rev C 65/216
©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C

MME API

CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

Multicom 4

MME_PingTransformer

Definition:

Arguments:

Returns:

Description:

Comments:

See also:

66/216

#include <mme.h>

Check that a transformer is still responding

MME_ERROR MME_PingTransformer (
MME_TransformerHandle_t Handle,
MME_Time_t Timeout)

Handle

Timeout

MME_SUCCESS

MME_DRIVER_NOT_INITIALIZED

MME_NOMEM

MME_TINVALID_HANDLE

MME_COMMAND_TIMEOUT

Handle of the targeted transformer.

Timeout period in milliseconds.

The ping request was successfully responded
to by the target transformer.

The MME driver has not been initialized.

The memory required to complete this
command is not available.

The handle does not refer to an existing
transformer

The ping request was not responded to by the
remote transformer within the specified
timeout period.

Send a ‘ping’ command request to a specific transformer. This acts like a very high
priority command to the target transformer and hence, should be processed as the
very next command the transformer executes. If the command has not responded
within the specified timeout then MME_ COMMAND_ TIMEOUT is returned. The Timeout
value should be carefully chosen so it does not produce false failures due to the
target transformer or CPU simply taking too long to respond.

Call type: blocking function call.
MME_SendCommand
MME_WaitCommand
MME_Time_t

8182595 Rev C

J

page: 68/218

©Copyright STMicroelectronics

N/A

Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C

Multicom 4

CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

MME API

MME_RegisterMemory Register memory region with a specific transformer

Definition:

Arguments:

Returns:

Description:

Comments:

See also:

#include <mme.h>

MME_ERROR MME_RegisterMemory (MME_TransformerHandle_t Handle,
void *Base,
MME_SIZE Size,
MME_MemoryHandle_t *Handle_p)

Handle Handle of the transformer to associate with
this memory registration.

Base Virtual address of the base of the memory
region being registered.

Size Size in bytes of the memory region being
registered.

Handle_p Pointer to an MME_ MemoryHandle_ t that will
contain the handle of the registered memory
region.

MME_SUCCESS The memory region was successfully
registered.

MME_DRIVER_NOT_ INITIALIZED The MME driver has not been initialized.

MME_INVALID_HANDLE The handle does not refer to an existing
transformer

MME_INVALID_ARGUMENT One or more of the supplied arguments are
invalid.

MME_ICS_ERROR An ICS subsystem error occurred.

Register a memory region with a specific transformer. This must be done for all®
memory regions that are used as data buffers to MME_ SendCommand.

If cached and uncached translation of the physical memory region are to be used,
then the region must be registered with both its cached and uncached virtual
addresses.

Base and Size are automatically aligned and rounded to the associated system
page size.

Call type: blocking function call.

MME_DeregisterMemory

d. This does not apply

1573

to data buffers allocated using MME_AllocDataBuffer.

8182595 Rev C 67/216

page: 69/218

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 70/218

MME API Multicom 4
MME_RegisterTransformer Register a transformer for instantiation on

aCPU
Definition: #include <mme.h>

MME_ERROR MME_RegisterTransformer (
const char *name,
MME_AbortCommand_t abortFunc,
MME_GetTransformerCapability_t
getTransformerCapabilityFunc,
MME_TInitTransformer_t
initTransformerFunc,
MME_ProcessCommand_t
processCommandFunc,
MME_TermTransformer_ t
termTransformerFunc)

Arguments:
name A unique name for the transformer.
abort The transformer function to call when an abort
request is made.
getTransformerCapabilityFunc
The transformer function to call when a capability
request is made.
initTransformerFunc The transformer function to call when a transformer is
initialized.
processCommandFunc The function to call when a command is sent to the
transformer.
termTransformerFunc The function to call when a transformer instance is
terminated.
Returns:
MME_SUCCESS The device has been successfully initialized.
Description: Registers a transformer for later instantiation on the CPU from which this call is made.
The name argument must not be longer than MME_MAX_TRANSFORMER_NAME bytes.
The error code MME_ INVALID_ARGUMENT will be returned if the name is too long.
The name of the transformer implicitly describes the type of that transformer, for
example ‘com. st .dvd.acc.Ac3DecoderMacro’. This can be confirmed by using
MME_GetTransformerCapability () to examine the capability of transformer if
required.
Comments: Call type: blocking function call.
See also: MME_InitTransformer
MME_DeregisterTransformer
68/216 8182595 Rev C I‘YI

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C

Multicom 4

CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

MME API

MME_SendCommand

Definition:

Arguments:

Returns:

Description:

Comments:

See also:

#include <mme.h>

MME_ERROR MME_ SendCommand (

Send a command to a specific transformer

MME_TransformerHandle_t Handle,

MME_Command_t

Handle

CmdInfo_p

MME_SUCCESS

MME_DRIVER_NOT_INITIALIZED

MME_NOMEM

MME_INVALID_HANDLE

MME_TINVALID_ARGUMENT

*CmdInfo_p)

Handle of the targeted transformer.

Pointer to an allocated structure that contains
the parameters of the command.

The command has been successfully inserted
in the command queue waiting to be
processed by MME.

The MME driver has not been initialized.

The memory required to complete this
command is not available.

The handle does not refer to an existing
transformer

CcmdInfo_p isinvalid

Send a command and its associated parameters to a specific transformer. The
command’s parameters are passed using the structure MME_Command_t. This in turn
uses a number of sub-structures to describe specific parameters.

When inserted the MME_CommandState_t of the command is set to

MME_COMMAND_PENDING.

Call type: non blocking function call.

MME_AbortCommand
MME_WaitCommand
MME_Command_t

8182595 Rev C 69/216

page: 71/218

©Copyright STMicroelectronics

N/A

Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 72/218
MME API Multicom 4
MME_Term Terminate a connection with MME
Definition: #include <mme.h>

MME_ERROR MME_Term(void)
Arguments: None
Returns:
MME_SUCCESS The operation complete correctly.
MME_DRIVER_NOT_INITIALIZED The MME driver has not been initialized.
MME_HANDLES_ STILL_OPEN Could not terminate, not all transformers
have been terminated.
MME_COMMAND_STILL_EXECUTING Could not terminate due to locally
registered transformer instantiations still
being active.
Description: Terminate a connection with a MME.
Free all the associated memory space.
Comments: Call type: blocking function call.
See also: MME_Init
70/216 8182595 Rev C ﬁ

©Copyright STMicroelectronics

N/A

Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 73/218

Multicom 4 MME API
MME_TermTransformer Terminate a transformer instance
Definition: #include <mme.h>

MME_ERROR MME_TermTransformer (MME_TransformerHandle_t handle)

Arguments:
handle Handle of the transformer to terminate.
Returns:
MME_SUCCESS The operation complete correctly.
MME_DRIVER_NOT_INITIALIZED MME has not been initialized.
MME_INVALID_HANDLE Invalid transformer handle.
MME_COMMAND_STILL_EXECUTING A command is still executing.
Description: Terminate a transformer instance and free all the associated resources.
A transformer can not be terminated while a command is executing.
Comments: Call type: blocking function call.
See also: MME_InitTransformer
MME_AbortCommand
ﬁ 8182595 Rev C 71/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C

MME API

CONTROLLED DOCUMENT (Check latest revision)

DATE 28-FEB-2011

Multicom 4

MME_WaitCommand

Definition:

Arguments:

Returns:

Description:

72/216

#include <mme.h>

MME_ERROR MME_WaitCommand

Block waiting for command completion

(MME_TransformerHandle_t Handle,

MME_CommandId_t CmdId,
MME_Event_t *Event_p,
MME_Time_t Timeout)

Handle
CmdId

Event_p

Timeout

MME_SUCCESS
MME_DRIVER_NOT_INITIALIZED

MME_TINVALID_HANDLE

MME_TINVALID_ARGUMENT

MME_COMMAND_TIMEOUT

MME_SYSTEM_INTERRUPT
MME_TICS_ERROR
MME_DATA_UNDERFLOW
MME_DATA_OVERFLOW

MME_TRANSFORMER_TIMEOUT

Handle of the associated transformer.
Command identity of the command to wait for.

Pointer to an MME_Event_t to return
associated event type in.

Timeout period in milliseconds or
MME_TIMEOUT_INFINITE.

The command was successfully waited for.
The MME driver has not been initialized.

The handle does not refer to an existing
transformer, or the supplied cmd1d is invalid.

One or more of the supplied arguments are
invalid.

The command did not complete before the
Timeout period expired, this might be due to
the CPU hosting the transformer crashing or
failing to respond.

The wait operation was interrupted.
An ICS subsystem error occurred.
A data underflow event occurred.
A data overflow event occurred.

The command has been timed out due to

MME_WaitCommand can be used to block waiting for a command to complete that

has been issued with MME_ SendCommand, and given the MME_CommandEndType_t
CmdEnd value of MME_COMMAND_END_RETURN_WAKE (passed in using
MME_Command_t).

On successful completion of MME_WaitCommand, MME_SUCCESS is returned and the
associated event type is updated through Event_p. For a normal completion this is
set to MME_COMMAND_ COMPLETED_EVT. Once a MME_WaitCommand has
completed successfully it is invalid to issue a subsequent MME_Wai tCommand using
the same Ccmd1d.

It is also possible for MME_WaitCommand to return MME_DATA_UNDERFLOW Orf
MME_DATA_OVERFLOW status values. In this case the event is set to
MME_DATA_UNDERFLOW_EVT or MME_NOT_ENOUGH_MEMORY_EVT respectively.

573

8182595 Rev C

page: 74/218

©Copyright STMicroelectronics

N/A

Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 75/218

Multicom 4 MME API

When such an error occurs the driver should respond as appropriate to the error
condition, it can then subsequently call MME_WaitCommand on the same CmdId.

If the command does not complete before the specified timeout then
MME_COMMAND_TIMEOUT is returned. This error code is also returned if the CPU
hosting the transformer fails. The event completion code is set to
MME_TRANSFORMER_TIMEQUT.

Setting the Timeout parameter to MME_TIMEOUT_ INFINITE causes
MME_WaitCommand to block indefinitely for command completion. However, it
returns MME_COMMAND_TIMEOUT, if the command is executing on a CPU that is
determined to have failed.

Comments: Call type: blocking function call.

See also: MME_SendCommand
MME_Command_t
MME_CommandEndType_t

KYI 8182595 Rev C 73/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 76/218
MME API Multicom 4
MME_Version Query the MME system version string
Definition: #include <mme.h>

const char MME_Version (void)

Arguments: None.
Returns: A pointer to the MME version string.
Errors: None.
Context: Callable from task and interrupt context. Can be called before MME_TInit.
Description: Return a pointer to the MME version string.
This string takes the form:
{major number}.{minor number}.{patch number} : [text]
That is, a major, minor and release number, separated by decimal points, and
optionally followed by a colon and a text string.
74/216 8182595 Rev C ﬁ
©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 77/218
Multicom 4 MME API
4.2 MME constants, enums and types
MME_AbortCommand _t Abort a transform command
Definition: #include <mme.h>

MME_ERROR (*MME_AbortCommand_t) (
void *context,
MME_CommandId_t commandId)
Arguments:
context Transformer context data.
commandId The command identifier.
Returns:
MME_SUCCESS Success.
MME_INVALID_ARGUMENT An invalid commandId parameter has been
specified.
MME_INVALID_COMMAND The transformer is active and cannot be aborted.
Description: Abort a transform command.
This function will be called when an abort command request is made on the host and
the command has been submitted to the transformer. The behavior is transformer-
specific; transformers that do not support command aborting must return
MME_INVALID_COMMAND.
KYI 8182595 Rev C 75/216
©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 78/218

MME API Multicom 4
MME_AllocationFlags_t Describes properties of allocated memory
Definition: #include <mme.h>

typedef enum

{
MME_ALLOCATION_PHYSICAL,
MME_ALLOCATION_CACHED,
MME_ALLOCTION_UNCACHED

} MME_AllocationFlags_t;

Description: Flags to describe the memory properties of allocated memory.
Flags may be ‘or-ed’ together to obtain sensible combinations of allocation properties.

In general the use of MME_ ALLOCTION_UNCACHED should be used with caution since
it is potentially harmful to performance. Its use should be limited to applications where
the underlying MME data buffer is used outside of the MME interface by cache
incoherent hardware. Even in this case it is preferable to use cached memory and
manage the caches if the host performs any reads or writes to the data buffer.

Constants:
MME_ALLOCATION_PHYSICAL Require the allocated memory to be
contiguous within its physical address space.
MME_ALLOCATION_CACHED Require the allocated memory to be accessed
through the cache on the host processor.
MME_ALLOCATION_UNCACHED Require the allocated memory to be accessed
directly by the host processor.
See also: MME_Command_t
MME_SendCommand
76/216 8182595 Rev C 1S7

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 79/218
Multicom 4 MME API
MME_Command_t Defines the parameters of the command sent to a

transformer as a number of sub-structures
Definition: #include <mme.h>

typedef struct
{

MME_UINT StructSize;
MME_CommandCode_t CmdCode;
MME_CommandEndType_t CmdEnd;

MME_Time_t DueTime;

MME_UINT NumberInputBuffers;
MME_UINT NumberOutputBuffers;

MME_DataBuffer_t **DataBuffers_p;
MME_CommandStatus_t CmdStatus;
MME_UINT ParamSize;
MME_GenericParams_t Param_p;

} MME_Command_t;

Description: Defines the parameters of the command passed to the MME_ SendCommand function.
While the command is in progress the master copy of all data structures passed by
pointer is owned by the companion which may not be cache coherent with the host
processor. As such writes to any data structure are illegal and reads from output
buffers should be avoided.

Fields:

StructSize Size of the structure (in bytes).

CmdCode Command to be performed.

CmdEnd Command mode completion. Specify whether or not
an event shall be generated when the command
completes. (refer to MME_CommandEndType_t
definition).

DueTime Time before the command has to be completed by
the MME

NumberInputBuffers Number of read only buffers to be supplied to the
transformer.

NumberOutputBuffers Number of read/write buffers to be supplied to the
transformer. Note that overuse of output buffers,
leads to poor cache utilization due to excess cache
purging.

DataBuffers_p Pointer to an array of pointers to data buffers
containing all the input buffers followed by all the
output buffers. As such the length of the array is
equal to or greater than NumberInputBuffers +
NumberOutputBuffers.

Ay 8182595 Rev C 77/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 80/218

MME API Multicom 4

CmdStatus An MME_CommandStatus_t structure that will
evolve during the processing of the command. Fields
of this structure will be filled by MME on either the
host or the companion (refer to
MME_CommandStatus_t definition).

ParamSize Size in bytes of the associated parameter array,
typically obtained using MME_LENGTH_BYTES ().
Param_p Pointer to an allocated parameter array that contains
information required to perform the requested
operation.
See also: MME_SendCommand

MME_CommandCode_t
MME_CommandEndType_t
MME_CommandStatus_t
MME_DataBuffer t
MME_GenericParams_t
MME_Time_t

MME_UINT

78/216 8182595 Rev C I‘YI

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 81/218
Multicom 4 MME API
MME_CommandCode_t Constant used by MME_Command._t -

defines command code
Definition: #include <mme.h>

Description:

Constants:

See also:

typedef enum

{
MME_SET_GLOBAL_TRANSFORM_PARAMS,

MME_TRANSFORM,
MME__SEND_BUFFERS
} MME_CommandCode_t;

Defines the code of the command to be executed onto the MME.

The MME_SET_GLOBAL_TRANSFORM_PARAMS is defined in order to limit
communication between host and companion by setting common parameters that will
be shared by the next transformations. This command code is to be called only when
those common parameters change and to send changes to the companion.
Parameters which are transformation specific should be part of the parameters of the
MME_TRANSFORM command.

MME_SET_GLOBAL_TRANSFORM_PARAMS

Set “generic” parameters for a specific transformer
for subsequent transform requests. Those
parameters will be used by the transformer until
parameters are changed by another call to set
generic parameters.

MME_TRANSFORM Commence a transform operation, that is process
data according to the current context and the
parameters associated with the command.

MME_SEND_BUFFERS Provide input and/or output buffers.

MME_Command._t
MME_SendCommand

8182595 Rev C 79/216

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C

MME API

CONTROLLED DOCUMENT (Check latest revision)

DATE 28-FEB-2011 page: 82/218

Multicom 4

MME_CommandEndType_t

Constant used by MME_Command_t -
defines completion behavior of
command

MME_COMMAND_END_RETURN_NO_INFO,
MME_COMMAND_END_RETURN_NOTIFY,
MME_COMMAND_END_RETURN_WAKE

Defines the behavior on the completion of a MME_ SendCommand command.

No event will be generated when the command
completes. But the MME_CommandStatus_t
structure passed when calling MME_ SendCommand is
filled giving the application the opportunity to retrieve
the command status.

An event will be generated when the command
completes by calling the callback function passed
when the transformer was instantiated.

When the command completes, no callback is
issued. Instead the command is signalled to
complete any calls of MME_Wa i t Command.

Definition: #include <mme.h>
typedef enum
{
} MME_CommandEndType_t;
Description:
Constants:
MME_ COMMAND_END_RETURN_NO_INFO
MME_ COMMAND_END_RETURN_NOTIFY
MME_COMMAND_END_RETURN_WAKE
See also: MME_UINT
MME_Command_t
MME_SendCommand
MME_WaitCommand
80/216 8182595 Rev C

J

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 83/218

Multicom 4 MME API
MME_Commandid_t Command identifier
Definition: #include <mme.h>

typedef MME_UINT MME_CommandId_t

Description: Used to identify a command. This identifier is allocated by MME when a call is made
to MME_SendCommand.

KYI 8182595 Rev C 81/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C

MME API

CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 84/218

Multicom 4

MME_CommandState t

Defines valid states for a command

Definition: #include <mme.h>
typedef enum
{
MME_COMMAND_PENDING,
MME_COMMAND_EXECUTING,
MME_COMMAND_COMPLETED,
MME_COMMAND_FAILED
} MME_CommandState_t;
Description: Defines the different states a command may have. See Section 2.7: Issuing
commands on page 26.
Constants:
MME_COMMAND_PENDING Command waiting to be processed by the MME.
MME COMMAND_EXECUTING The command is the currently executed by the MME.
MME COMMAND_COMPLETED The command has been completed by the
transformer and results are available for the
application.
MME_COMMAND_FAILED Errors occurred during command processing by the
transformer or by MME.
See also: MME_CommandStatus_t
82/216 8182595 Rev C 1S7
©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 85/218
Multicom 4 MME API
MME_CommandStatus t Sub-structure to MME_Command _t -

returns transformation results
Definition: #include <mme.h>

Description:

Fields:

Note:

typedef struct
{

MME_CommandId_t CmdId;
MME_CommandState_t State;

MME_Time_t ProcessedTime;
MME__ERROR Error;

MME_UINT AdditionalInfoSize;

MME_GenericParams_t AdditionalInfo_p;
} MME_CommandStatus_t;

Structure filled by MME with the results of the corresponding transformation actions
performed.

With the exception of the additional parameters all members of the
MME_CommandStatus_t are populated by the MME as part of MME_ SendCommand.

MME_CommandStatus_t is not supplied directly to any MME API call (it forms part of
the definition of MME_Command_t and is therefore not prefixed by a structure size).

Fields AdditionalInfoSize and AdditionalInfo_p are filled by the caller
before calling the MME_ SendCommand function. The data pointed to by
AdditionalInfo_p is transported bidirectionally - that is, it is sent from the host to
the companion when the command is submitted and back from the companion to the
host when the command completes.

Field cmdz1d is filled by the MME_SendCommand function.

Fields ProcessedTime and Error are filled by MME itself. These fields are
relevant only when the command has been processed that is when the field state
has turned to the MME_COMMAND_COMPLETED Of MME_ COMMAND_FATILED value.

This structure is owned by the transformer once passed into the
MME_ProcessCommand_t transformer entry point and the state field may be
modified by the transformer to reflect that a transform has been deferred. See
Section 3.4.2: Deferred commands on page 38.

CmdId Unique identifier of the command the structure is
related to. This field is filled by the
MME_ SendCommand function

State State of the command.
ProcessedTime Time spent processing the command.
Error Command status as a result of processing.

AdditionalInfoSize Size in bytes of the associated parameter array,
typically obtained using MME_LENGTH_BYTES ().

AdditionalInfo_p Pointer to an allocated parameter array where the
MME can store additional info related to the
performed transformation (transformer specific).

8182595 Rev C 83/216

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 86/218

MME API Multicom 4

See also: MME_Command_t
MME_CommandState_t
MME_SendCommand

84/216 8182595 Rev C I‘YI

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 87/218
Multicom 4 MME API
MME_DataBuffer_t Data buffer structure as returned by

MME_AllocDataBuffer
Definition: #include <mme.h>

typedef struct

{

MME_UINT StructSize;
void*UserData_p;

MME_UINT Flags;

MME_UINT StreamNumber;

MME_UINT NumberOfScatterPages;
MME_ScatterPage_t*ScatterPages_p;
MME_UINT TotalSize;

MME_UINT StartOffset;

} MME_DataBuffer_t;

Description: Definition of one (possibly scattered) buffer belonging to one stream.

A data buffer consists of a list of one or several scatter pages. Each page describes a

contiguous, linear memory block giving the transformer a memory space to work with.

Fields:

StructSize Size of the structure (in bytes).

UserData_p Application specific data to aid data structure lookup
from callbacks.

Flags Buffer specific flags.

StreamNumber Identifies the stream to which the buffer belongs.

NumberOfScatterPages Number of scatter pages the buffer is composed of
(that is the number of entries of the
MME_ScatterPage_t array).

ScatterPages_p Pointer to an array of scatter pages.

TotalSize Amount of memory available for this buffer, that is,
the sum of the memory size of the scatter pages this
buffer comprises.

StartOffset Points to first valid byte in (scattered) buffer.

See also: MME_ScatterPage _t
MME_Command_t
Ay 8182595 Rev C 85/216
©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 88/218

MME API Multicom 4
MME_DataFormat t Defines the data format of a transformer’s I/0
Definition: #include <mme.h>

typedef struct
{

unsigned char FourCC[4];
} MME_DataFormat_t;

Description: Used to define the format of the data a transformer supports for its input or output.
Refer to http://www.webartz.com/fourcc/ for a complete description of the FOURCC
definition.

Fields:

FourcCC Contains the format defined using its associated Four
Character Code (FOURCC).
86/216 8182595 Rev C 1S7]

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

http://www.webartz.com/fourcc/
http://www.webartz.com/fourcc/

DOCUMENT 8182595 REVISION C

Multicom 4

CONTROLLED DOCUMENT (Check |

atest revision) DATE 28-FEB-2011

MME API

MME_DBG_FLAGS

Definition:

Description:

See also:

#include <mme.h>

typedef enum mme_debug_flags
{
MME_DBG_ERR
MME_DBG_INIT
MME_DBG_MANAGER

MME_DBG_RECEIVER
MME_DBG_TRANSFORMER

MME_DBG_EXEC

MME_DBG_COMMAND

MME_DBG_BUFFER
} MME_DBG_FLAGS;

0x0001,
0x0002,
0x0004,
0x0010,
0x0020,
0x0040,
0x0100,
0x0200,

Describes properties of the debug logging flags

MME debugging flags specified as a bitmask value. The valid set of debugging flags

are detailed in Table 7.

Table 7.

MME debug logging flags

Debug flag

Description

MME_DBG_ERR

Log all error messages.

MME_DBG_INIT

Log all initialization actions.

MME_DBG_MANAGER

Log all MME administration actions.

MME_DBG_RECEIVER

Log all transformer receiver actions.

MME_DBG_TRANSFORMER

Log all client side transformer actions.

MME_DBG_EXEC

Log all transformer execution loop actions.

MME_DBG_COMMAND

Log all transformer command actions.

MME_DBG_BUFFER

Log all MME data buffer actions.

MME_DebugFlags

8182595 Rev C

87/216

page: 89/218

©Copyright STMicroelectronics

N/A

Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 90/218

MME API Multicom 4
MME_ERROR Status indicator used by all MME functions
Definition: #include <mme.h>

typedef enum

{
MME_SUCCESS,
MME_DRIVER_NOT_INITIALIZED,
MME__NOMEM,
MME_INVALID HANDLE,
MME_INVALID_ARGUMENT,
MME__UNKNOWN_TRANSFORMER,
MME_TRANSFORMER_NOT_RESPONDING,
MME_HANDLES_STILL_OPEN,
MME__COMMAND_STILL_EXECUTING,
MME__COMMAND_ABORTED,
MME_DATA_UNDERFLOW,
MME_DATA_OVERFLOW,
MME_TRANSFORM_DEFERRED,
MME_SYSTEM_INTERRUPT,
MME_TICS_ERROR,
MME__INTERNAL_ERROR,
MME_NOT_IMPLEMENTED,
MME__COMMAND_TIMEOUT

} MME_ERROR;

Description: Status indicator used by all MME functions.

Note: Although MME_SUCCESS is guaranteed to be zero the numeric value of all other error
codes is unspecified. Additionally it is not guaranteed that these values will be
contiguous.

Constants:
MME_SUCCESS Command complete successfully.

MME_DRIVER_NOT_INITIALIZED

MME or some of its underlying infrastructure has not
yet been initialized.

MME_DRIVER_ALREADY_ INITIALIZED
MME has been initialized already.

MME_NOMEM The system has insufficient resources to complete
this request.

MME_INVALID_ HANDLE The transformer handle is invalid or out of date.

MME INVALID_ARGUMENT One or more of the function arguments are invalid
(for example: out of range, null pointer, incorrect
structure size).

MME_UNKNOWN_TRANSFORMER The requested transformer does not exist.

MME_INVALID COMMAND The command code is invalid.

J

88/216 8182595 Rev C

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 91/218
Multicom 4 MME API

MME_TRANSFORMER_NOT_RESPONDING
The transformer is not responding to requests for
status.

MME_HANDLES_STILL_OPEN The operation cannot complete until all transformer
handles have been closed.

MME_ COMMAND_STILL_EXECUTING
The operation cannot complete until the transformer
is idle.

MME_COMMAND_ABORTED The command did not complete because it was
explicitly aborted by the user.

MME_DATA_UNDERFLOW Insufficient input data to generate a frame of output.

MME_DATA_OVERFLOW Output buffers are too small to store the transformed
data.

MME_TRANSFORM_DEFERRED A transform has been placed in the deferred state by
a transformer.

MME_TICS_ERROR ICS underlying MME has reported an error.

MME_ INTERNAL_ERROR There is an internal inconsistency.

MME_NOT_IMPLEMENTED The function is not implemented.

MME_COMMAND_TIMEOUT An issued command timed out.

Ay 8182595 Rev C 89/216
©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 92/218
MME API Multicom 4
MME_Event t Valid event codes associated with a command
Definition: #include <mme.h>

Description:

Constants:

See also:

90/216

typedef enum

{
MME__COMMAND_COMPLETED_EVT,
MME_DATA_UNDERFLOW_EVT,
MME_NOT_ENOUGH_MEMORY_EVT,
MME_TRANSFORMER_TIMEOUT

} MME_Event_t;

Event codes associated with a command.

Events are delivered to the application by the callback mechanism.

MME_COMMAND_COMPLETED_EVT

A command has been completed by MME. The error
code in MME_CommandStatus_t describes the
state.

MME_DATA_UNDERFLOW_EVT The transformer has run out of data before
completing an output frame. The error code in
MME_CommandStatus_t will be
MME_DATA_UNDERFLOW.

MME_NOT_ENOUGH_MEMORY_EVT

The transformer has insufficient output buffers to
output a frame. The error code in
MME_CommandStatus_t will be
MME_DATA_OVERFLOW.

MME_TRANSFORMER_TIMEOUT

The command has been timed out due to the CPU
hosting the transformer crashing or failing to respond.

MME_Command_t
MME_SendCommand

J

8182595 Rev C

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C

Multicom 4

CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 93/218

MME API

MME_GenericCallback t

Call mechanism for communication between
transformer and host

Definition: #include <mme.h>
typedef void (*MME_GenericCallback_t)
MME_Event_t Event,
MME_Command_t *CallbackData,
void *UserData) ;
Description: Generic callback mechanism for communication between transformer and host.
Guaranteed not to be called in a re-entrant manner.
Fields:
Event Event, associated with either data buffers or
command transformations.
CallbackData Pointer to the command structure related to this
command.
UserData Reference to user data, provided with the call to
MME_TInitTransformer.
See also: MME_SendCommand
MME_InitTransformer
KYI 8182595 Rev C 91/216
©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 94/218

MME API Multicom 4
MME_GenericParams_t Type for data exchange between CPUs
Definition: #include <mme.h>

typedef void* MME_GenericParams_t

Description: Generic type used to exchange data between host and companion CPUs.

Fields: None

See also: MME_Command_t

92/216 8182595 Rev C 1S7]

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 95/218
Multicom 4 MME API
MME_GetTransformerCapability_t Provide transformer capabilities
Definition: #include <mme.h>

MME_ERROR (*MME_GetTransformerCapability_ t) (

MME_TransformerCapability t *capability)

Arguments:

capability Transformer parameters.
Returns:

MME_SUCCESS Success.

MME_INVALID_ARGUMENT An invalid transformer parameter has been specified.
Description: Provide the capabilities of a transformer.
Comments: Call type: blocking function call.
See also: MME_GetTransformerCapability

MME_ TransformerCapability t
'S7i 8182595 Rev C 93/216

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011
MME API Multicom 4
MME_ InitTransformer _t Create a transformer instance
Definition: #include <mme.h>
MME_ERROR (*MME_InitTransformer t) (
MME_UINT size,
MME_GenericParams_t params,
void **context)
Arguments:
size Size of the transformer initialization parameters in
bytes.
params Transformer initialization parameters.
context Pointer to a location in which to store a transformer
instance-specific value.
Returns:
MME_SUCCESS Success.
MME_INVALID_ARGUMENT An invalid transformer parameter has been specified.
MME_NOMEM Insufficient memory available.
Description: Create an instance of a transformer. It is called as a result of a host call to
MME_InitTransformer ()
The callback and CallbackUserData fields of the
MME_TransformerInitParams_t structure are not valid for the transformer.
Comments: Call type: blocking function call.
See also: MME_InitTransformer
94/216 8182595 Rev C I‘YI

page: 96/218

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 97/218

Multicom 4 MME API

MME_MAX_TRANSFORMER_NAME Defines maximum length of a
transformer name

Definition: #include <mme.h>

#define MME_MAX_TRANSFORMER_NAME <const unsigned int>
Description: The maximum length in bytes of a transformer name.

This constant defines the maximum length of the transformer name that may be
passed to MME_InitTransformer () and MME_RegisterTransformer ().

See also: MME__InitTransformer

MME_RegisterTransformer

KYI 8182595 Rev C 95/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 98/218

MME API Multicom 4
MME_MemoryHandle_t Memory registration handle
Definition: #include <mme.h>

typedef MME_UINT MME_MemoryHandle_t;

Description: Handle returned by MME_RegisterMemory.
Used to identify the memory registration for later function calls. The value of zero is
invalid.

See also: MME_RegisterMemory

MME_DeregisterMemory

96/216 8182595 Rev C I‘YI

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 99/218

Multicom 4 MME API
MME_Priority_t Valid priorities for command execution
Definition: #include <mme.h>

typedef enum

{
MME_PRIORITY_HIGHEST,
MME_PRIORITY_ABOVE_NORMAL,
MME_PRIORITY_NORMAL,
MME_PRIORITY_BELOW_NORMAL,
MME_PRIORITY_LOWEST

} MME_Priority_t;

Description: The priority at which a command should be executed.
See also: MME_SendCommand
'S7i 8182595 Rev C 97/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011
MME API Multicom 4
MME_ProcessCommand_t Process the transformer command
Definition: #include <mme.h>
MME_ERROR (*MME_ProcessCommand_t) (
void *context,
MME_Command_t *commandInfo)
Arguments:
context Transformer context.
commandInfo Data associated with the command.
Returns:
MME_SUCCESS Success.
MME_INVALID_HANDLE The handle does not refer to an existing transformer.
MME_INVALID_ARGUMENT The commandInfo argument is invalid.
MME_INVALID_COMMAND The command embedded in commandInfo is
invalid.
MME_NOMEM The result of the processing of the input data does
not fit in the provided memory space.
MME_NOMEM The result of the processing of the input data does
not fit in the provided memory space.
MME_DATA_UNDERFLOW Returned when MME reaches the end of the input
buffer without being able to produce the requested
output.
Description: This function performs one of the following operations:
— commence a new transform
— set the transformer parameters
— handle the submission of data buffers
Comments: Call type: blocking function call.
See also: Chapter 3: Writing an MME transformer on page 33.
98/216 8182595 Rev C ﬁ

page: 100/218

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 101/218

Multicom 4 MME API
MME_ScatterPage_t Describe a scatter page
Definition: #include <mme.h>

typedef struct {
void*Page_p;
MME_UINT Size;
MME_UINT BytesUsed;
MME_UINT FlagsIn;
MME_UINT FlagsOut;
} MME_ScatterPage_t;

Description: Describe a scatter page, that is a linear memory range within a data buffer.

BytesUsed is meaningless until the transformation completes. It is filled by the
transformer with the number of bytes it wrote into this page while processing data.

The FlagsIn field and FlagsoOut fields are used to pass additional information
about the scatter page. The Flagsn field is used to pass state from the host to the
transformer. The Flagsout field is used to pass state from the transformer to the
host. Both fields are divided into two regions - the MME region and the application
region. The MME region is the upper 8 bits; unused bits in the MME region are
reserved and must be set to zero.

The remaining 24 bits are available to the application and transformer, see Table 2:
MME_ScatterPage_t Flagsin and FlagsOut on page 25.

Fields:
Page_p Address of the memory space.
Size Size of the page (in bytes).
BytesUsed Number of bytes used in this page.
FlagsIn Combination of generic and transformer specific
flags.
FlagsOut Combination of generic and transformer specific
flags.
See also: MME_DataBuffer_t
ﬁ 8182595 Rev C 99/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 102/218

MME API Multicom 4
MME_TermTransformer _t Terminate a transformer instance
Definition: #include <mme.h>

MME_ERROR (*MME_TermTransformer_t) (void *context)

Arguments:
context Context of the transformer.
Returns:
MME_SUCCESS Success.
MME_INVALID_HANDLE The handle does not refer to an existing
transformer.
MME_COMMAND_STILL_EXECUTING A command is still executing on the
transformer instance.
Description: Terminate an instance of a transformer and free any resources that the instance
uses.
Comments: Call type: blocking function call.
100/216 8182595 Rev C I‘YI

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 103/218

Multicom 4 MME API
MME_Time_t Type used by MME_Command_t - describes time
Definition: #include <mme.h>

typedef MME_UINT MME_Time_t;

Description: Describe the time in the MME environment.
See also: MME_Command_t
Ay 8182595 Rev C 101/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 104/218

MME API Multicom 4
MME_TransformerCapability_t Describe transformer capabilities
Definition: #include <mme.h>

typedef struct {
MME_UINTStructSize;
MME_UINTVersion;
MME_DataFormat_tInputType;
MME_DataFormat_tOutputType;
MME_UINTTransformerInfoSize;
MME_GenericParams_tTransformerInfo_p;
} MME_TransformerCapability_ t;

Description: Describe the capabilities of a particular transformer.

Note: On multi-processor systems the contents of TransformerInfo_p will only be
copied in one direction (companion to host). For this reason all transformers must
treat the data pointed to as uninitialized.

Fields:
StructSize Size of the structure (in bytes).
Version Version of the transformer.
InputType Supported input type.
OutputType Supported output types.
TransformerInfoSize Size in bytes of the associated parameter array,
typically obtained using MME_LENGTH_BYTES ().
TransformerInfo_p Pointer to an allocated parameter array where the
transformer may store specific capabilities of the
transformer (transformer specific).
See also: MME_GetTransformerCapability
102/216 8182595 Rev C 1S7]

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 105/218

Multicom 4 MME API
MME_TransformerHandle_t Transformer handle
Definition: #include <mme.h>

typedef MME_UINT MME_TransformerHandle_t
Description: Handle returned by MME_InitTransformer.

Used to identify the transformer for later function calls.

The value of zero is invalid.

See also: MME_InitTransformer

KYI 8182595 Rev C 103/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 106/218

MME API Multicom 4

MME_TransformerlnitParams t Parameters used to initialize transformer

Definition: #include <mme.h>

typedef struct {
MME_UINT StructSize;
MME_Priority_t Priority;
MME_GenericCallback_t Callback;
void*CallbackUserData;
MME_UINT TransformerInitParamsSize
MME_GenericParams_t TransformerInitParams_p;
} MME_TransformerInitParams_t;

Description: Parameters to use to initialize a transformer.

The callback and CallbackUserData fields of the
MME_TransformerInitParams_t structure are not valid for the transformer.

Fields:

StructSize Size of the structure (in bytes).

Priority The transform queue priority.

Callback Function pointer to handle both command and data
callbacks.

CallbackUserData Anonymous data provided with the callback. Those
data will be passed as parameters every time the
transformer will call its associated
CallbackUserData functions.

TransformerInitParamsSize
Size in bytes of the associated parameter array,
typically obtained using MME_LENGTH_BYTES ().

TransformerInitParams_p Pointer to an allocated parameter array that the
contains additional parameters if required
(transformer specific).

See also: MME_InitTransformer
104/216 8182595 Rev C 1S7]

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 107/218

Multicom 4 MME API
MME_UINT Type used by MME_Command_t - defines numeric value
Definition: #include <mme.h>

typedef unsigned <qualifier> int MME_UINT
Description: Unsigned integer type of at least 32 bits.

On MME implementations that share memory structures directly, the size of this type
will be identical on all processors. An MME implementation that copies structures
may define this type differently on each processor to maximize efficiency.

KYI 8182595 Rev C 105/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595

REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

Overview of the inter-core system (ICS) Multicom 4

5

Overview of the inter-core system (ICS)

ICS in Multicom is a run-time system that provides program execution management and
communications between all the CPUs on an ST SoC. ICS replaces the EMBX layer in
previous versions of Multicom, with a simpler approach to communication, and with the
addition of facilities for loading, starting, monitoring and recovering from errors in other
CPUs in the SoC. The intention is that the ICS run-time will be loaded onto all the CPUs
during system boot and initialization and then used as a building block to provide higher-
level features and functionality.

The ICS API reference lists all the functions in the ICS API. The purpose of this overview is
to introduce the key concepts of ICS and the key functions associated with each concept.

In some cases the ICS APIs rely on some underlying system libraries available with the
tools for compiling programs on the CPUs, notably ELF file loading and dynamic module
loading libraries.

page: 108/218

Note: ICS API function names begin with “ics_” (system initialization and loading functions) or
“Ics_” (system initialization, communication, memory management and support functions).
The function ICS_cpu_init or ics_cpu_init must be called on the current CPU before
any function beginning with I1CS_ is called.
Figure 7. Multicom 4 - ICS context
ST40 host ST200 audio/video
. r— — - — — — — — — = a
Application | Dynamic objects |
\ 4 A 4 I I
Audio Video I I
driver driver | |
N/ | |
MME | MME |
L e e e e — = d
r—-—-— - - - - - - - = A
ICS | Static object |
Static code loader | ICS |
Dynamic code loader | Dynamic code loader |
Debug logger : Debug logger :
Watchdog : Watchdog :
Inter-core communications [« p=tp{ Inter-core communications |
I I
L e e e e — = d
106/216 8182595 Rev C 1S7]
©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 109/218

Multicom 4

Overview of the inter-core system (ICS)

5.1 Summary of ICS facilities

The following is a summary of the main facilities provided by the ICS API.

ICS initialization and system loading, see Section 5.2 on page 107

ICS provides API calls to allow the application to set up ICS and to facilitate the loading
and execution of the initial software in each CPU in the SoC.

Channel-based communication, see Section 5.3 on page 111

The lowest-level communication primitive provided by ICS is that of a channel. A
channel consists of a unidirectional, fixed-length, fixed-size FIFO used for
communicating between a pair of CPUs.

Port-based communication, see Section 5.4 on page 113

ICS incorporates a port-based communication system closely based on the original
EMBX Port model. The ICS port API allows ASCIl named ports to be registered on
each CPU and then messages can be targeted at those ports.

Memory region management, see Section 5.5 on page 115

Zero-copy data passing between the CPUs is facilitated by sharing physically
contiguous regions of memory between CPUs. To this end, ICS provides functions for
managing physically contiguous regions of memory and mapping them for all the
communicating CPUs.

Name server, see Section 5.6 on page 117

The ICS Port model is based on named port handles which can be looked up using a
central name sever. This name service has been exported as a primary API so that
programmers can register data objects associated with an ASCII string.

Dynamic module loading, see Section 5.7 on page 117

ICS provides a dynamic module loading system based on the relocatable loader library
provided with the ST40 and ST200 Micro Toolsets, using OS21. This API allows code
modules to be loaded and unloaded into any of the running CPUs on demand.

CPU watchdog support, see Section 5.8 on page 118

In order to facilitate fault detection and recovery, ICS provides a CPU watchdog API
that allows callback functions to be registered. These callback functions are then
triggered whenever one of the monitored CPUs fails to update a internal counter within
a fixed time period.

Debug logging support, see Section 5.9 on page 119

ICS provides a debugging facility where text output from the running CPU cores is
logged to a cyclic buffer. APIs are provided to dump out these logs on a per-CPU basis.

5.2 ICS initialization and system loading

There are three stages to ICS initialization and system loading. these are described in the
following sections:

Section 5.2.1: ICS configuration and setup
Section 5.2.2: CPU loading and initialization
Section 5.2.3: ICS initialization and termination on page 110

'S7i 8182595 Rev C 107/216
©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595

REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

Overview of the inter-core system (ICS) Multicom 4

5.2.1

5.2.2

Note:

Note:

108/216

ICS configuration and setup

The final intended method for configuring and setting up ICS for a specific SoC and
application is not yet defined; this will be done at a later stage of the project.

The ICS system library is linked into the initial application binary (or Linux kernel in the case
of Linux systems) to be booted into each of the CPUs and each instantiation is provided with
the information needed to set up the ICS system on that CPU so that it can share memory

and (where appropriate) control the other CPUs. It is expected that this will be derived from
a BSP or set of registry entries which define the required information.

CPU loading and initialization

The facilities for loading and starting other CPUs on the SoC are new in this version of
Multicom: similar facilities were not available in earlier versions of Multicom, but are defined
now so that the API provides a full self-contained set of facilities for multi-CPU system
development.

It is not necessary to use the Multicom APIs for this purpose; the loading, starting and
restarting of CPUs can be done by application code directly and/or using other libraries as
available.

In the ICS model an SoC consists of a set of CPUs, one of which is typically denoted as the
master CPU (sometimes called the host CPU) which has the responsibility of loading and
starting the system. The other CPUs in the SoC are typically denoted the companion CPUs.

It is envisaged that the master CPU will be used to load the initial software for the other
cores and hence the firmware loading and CPU execution ICS functions may not be
available on the other CPUs. Once ICS is up and running on all CPUs there is no significant
distinction between a master and a companion, so that a companion CPU could
communicate with another companion CPU and could load dynamic modules to another
companion CPU, if the ICS system has been configured to allow this (and this may depend
on the design of the SoC). The master CPU in an ICS system would typically run the
nameserver service and monitor and manage the rest of the system in the event of a fault,
but it is possible to delegate these functions to other CPUs in the SoC in a system design.

In the current implementation of ICS the master CPU may be running Linux or
0S21/0OSPlus. The companion CPUs are expected to be running OS21.

A dual- (or multi-) core SMP processor under the control of a single OS would be considered
a single CPU for the purposes of this definition.

Each CPU is given a logical number 0.. for the purposes of ICS. The logical numbers for
the set of CPUs on an SoC are defined in the Multicom BSP or Registry information.

An ICS function operating on a CPU is given the CPU logical number to which the operation
should be applied. An ICS function operating on one or more CPUs is given a bitmask in
which the bits that are set define the CPUs to which the operation applies.

CPU query functions

Table 8. CPU query functions

Function name Description

ics_cpu_name Query the BSP/Registry for CPU name string

ics_cpu_type Query the BSP/Registry for CPU type string

J

8182595 Rev C

page: 110/218

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595

REVISION C

Multicom 4

CONTROLLED DOCUMENT (Check latest revision)

DATE 28-FEB-2011

Overview of the inter-core system (ICS)

Table 8.

CPU query functions

Function name

Description

ics_cpu_lookup

Query the BSP/Registry for CPU logical number

ics_cpu_self

Query the CPU Logical number

ics_cpu_mask

Query the logical CPU bitmask

page: 111/218

These functions query the CPU database set up from the BSP. The first two return the name
string and type string respectively for a specified CPU. ics_cpu_lookup returns the
logical number given a CPU name. ics_cpu_self returns the CPU logical number of the
CPU on which itis executing. ics_cpu_mask returns the bitmask defining the set of CPUs
on the SoC on which ICS has been specified to run.

The ICS functions for CPU loading and starting are given in Table 9 and Table 10.

Table 9. Program loading functions

Function name Description

ics_load_elf_file Load and unpack an ELF file

ics_load_elf_image Unpack an ELF memory image

ics_load_elf_fileand ics_load_elf_image load an ELF file to memory, either
from a file stored in a local file system, or from an ELF file image stored in memory. The ELF
start/entry address is returned to the caller in the entryaddrp argument.

Table 10. CPU control functions

Function name Description

ics_cpu_reset Reset and stop CPU execution

ics_cpu_start Start execution of a CPU

These functions reset and start code running on the CPU specified. The CPU number must
not refer to the CPU on which the function is being called; in this case an error is returned.
The running CPU must have the capability to control the targeted CPU; otherwise an error is
returned.

Other ics helper functions are given in Table 11 and Table 12.

Table 11. Information functions

Function name Description

ics_cpu_version Query the ICS system version string

ics_err_str Return an ICS error string

'S7i 8182595 Rev C 109/216
©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595

Overview of the inter-core system (ICS)

REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

Multicom 4

5.2.3

110/216

Table 12.

Function name

Heap functions

Description

ics_heap_create Create an ICS heap

ics_heap_destroy Destroy an ICS heap

ics_heap_alloc Allocate a buffer from an ICS memory heap

ics_heap_free Release a buffer back to an ICS heap

ics_heap_base Query ICS heap for virtual base address

ics_heap_pbase Query ICS heap for physical base address

Query ICS heap for size

ics_heap_size

The ics_heap functions carry out typical heap operations for ICS heaps and are intended
to be used by an application in conjunction with the memory region functions for buffer
management.

ICS initialization and termination

Code running on each of the CPUs in the SoC has to initialize the ICS system on that CPU
before it can use ICS functions. This is done with the function ICS_cpu_init. All CPUs
wishing to communicate, must first call this function. However, they will not synchronize or
communicate with each other until necessary.

ICS_cpu_init alsotakes aflag argument; ICS_INIT_CONNECT_ALL and setting this flag
causes initialization to be synchronized between the CPUs. In this case, all CPUs must call
ICS_cpu_init (setting ICS_INIT. CONNECT_ALL) and each call will only return when all
CPUs defined in the CPU set have successfully called 1CS_cpu_init. If one or more
CPUs in the set fail to call IcS_cpu_init then the blocked calls will eventually return after
a pre-defined timeout.

Table 13.

Function name

Initialization and termination functions

Description

ICS_cpu_init Initialize the ICS system on a CPU

ICS_cpu_term Terminate the ICS system on a CPU

ICS_cpu_info Query the ICS CPU configuration

ICS_cpu_term is called when an application is shutting down and is used to close down
the local ICS system.

ICS_cpu_info identifies the caller's logical CPU number and the also the set of CPUs
running ICS defined in a bitmask.

J

8182595 Rev C

page: 112/218

©Copyright STMicroelectronics

N/A

Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 113/218

Multicom 4

Overview of the inter-core system (ICS)

5.3 Channel-based communication

The lowest-level communication primitive provided by ICS is that of a channel. A channel
consists of a point-to-point unidirectional FIFO (first-in, first-out) queue of message slots
used for communicating between a pair of CPUs. The length of the FIFO and the size of the
slots can be chosen on creation. APIs for data sending and for process and interrupt based
data reception are provided. See Figure 8.

Channels provide the lowest-overhead and lowest-latency communications within the ICS
system. As such, the programmer is responsible for all protocol handling and flow control.

Figure 8. ICS channels

CPU #0

» Slot size
o B

n slots - CPU #1

CPU #2

a—
—»

CPU #3

—

No equivalent low-level APl was provided in previous versions of Multicom, causing a
number of alternative very low-level communication libraries to be written for different
applications; the intention here is to provide this low level of communication in a

standardized form.

Table 14. Channel functions in ICS

Function name

Description

ICS_channel_alloc

Allocate an ICS communication channel

ICS_channel free

Free an ICS channel

ICS_channel_open

Open a send channel for communication

ICS_channel_ close

Close a send channel

ICS_channel_send

Send a buffer using an ICS send channel

ICS_channel_recv

Blocking call to receive a buffer from an ICS channel

ICS_channel_release

Release an ICS channel FIFO buffer

ICS_channel_unblock

Unblock a blocked ICS channel

8182595 Rev C 111/216

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 114/218

Overview of the inter-core system (ICS) Multicom 4

ICS_channel_alloc is called on the CPU that is to be the receiving end of the channel; it
defines a callback handler function for the channel, the FIFO length and slot size, and
optionally the memory base for the FIFO data. The callback function is to be invoked in
interrupt context whenever a new entry arrives in the FIFO (and may be NULL if a process
based approach to receiving is wanted).

In order to send, using an ICS channel, it must first be opened. ICS_channel_open
opens a channel for sending and returns a handle to be used for send operations. Opening
a channel is only necessary for the sender; the receiver implies opening by the allocation.
The channel handle may be one opened locally by TCS_channel_alloc, by looking up a
channel object in the name server (see Section 5.6: Name server on page 117) or one
passed to the sender by some other mechanism.

ICS_channel_send sends a buffer to a channel using a send channel handle.

The buffer is processed by either:
® invoking the callback function at the receiver, or

@ if no callback function is defined, the receiver calling an ICS_channel_recv function;
on returning from the function a pointer to the buffer is supplied so that the receiving
application can process it

ICS_channel_send will return an error if there is no free slot in the FIFO.
The callback function associated with a channel has prototype:

ICS_ERROR (*ICS_CHANNEL_CALLBACK) (ICS_CHANNEL channel,
ICS_VOID *param, void *buf)

The callback function is supplied with the channel handle, a parameter defined in the
channel_alloc call, and a pointer to the buffer sent. Normally the handler will copy and
consume the buffer and then call ICS_channel_release. If the handler is unable to
consume the buffer it will return TCs_FULL and the FIFO will be blocked until the function
ICS_channel_unblock is called.

ICS_channel_recv blocks on a receive channel until a new buffer arrives, at which point
it returns with a pointer to the new buffer. Once the application has processed the buffer it
should call ICS_channel release with the buffer pointer.

g

112/216 8182595 Rev C

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 115/218

Multicom 4 Overview of the inter-core system (ICS)

5.4 Port-based communication

ICS incorporates a port-based communication system similar to the EMBX port model
provided in previous versions of Multicom, see Figure 9. The ICS port API allows named
ports to be registered on each CPU and then messages can be sent to those ports. The
exact location of the target port is not required to be known to the sender and hence ports
allow services to be abstracted away from their CPU location. APIs are provided for sending
messages on ports and for process and interrupt based handling of message reception.

Figure 9. ICS port model

CPU #0 CPU #1

Inter CPU channels
Message queue

Port S

“Name1”

Message queue

Port
“Name3”

- n messages -

I

[
Message descriptor Port

“Name4”

Port -

“Name2”

Port
“Name5”

Ports can provide copy-based short message passing (inline) and zero-copy message
passing. For zero-copy message passing, the memory buffers must be in memory regions
that have been pre-registered with the ICS system (see Section 5.5: Memory region
management on page 115).

Ports can be either anonymous or named. Named ports are registered with a global name
server.

Ports provide a many-to-one communication model. Multiple processes (potentially on
different CPUs) can send to a port. Ports implement a FIFO queue of messages between
senders and receiver.

Table 15. Port and message functions in ICS

Function name Description
ICS_port_alloc Allocate an ICS port
ICS_port_cpu Return the logical CPU number associated with the port
ICS_port_free Free and close an ICS port
ICS_port_lookup Look up an ICS port handle
ICS_msg_send Send a message buffer to an ICS port
ICS_msg_recv Blocking call to receive a message on an ICS port
ICS_msg_post Post an asynchronous receive on an ICS port
ICS_msg_cancel Cancel an asynchronous port receive
ﬁ 8182595 Rev C 113/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595

REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 116/218

Overview of the inter-core system (ICS) Multicom 4

Table 15. Port and message functions in ICS (continued)

Function name Description
ICS_msg_test Test an asynchronous port receive event
ICS_msg_wait Block and wait for an asynchronous port receive event

ICS_port_alloc allocates an ICS port (for receiving) on the local CPU. Ports can either
be named or they can be local and anonymous (if NULL is passed as the name). All named
ports are registered with a global name server, from which they can be discovered using the
function ICcS_port_lookup. ICS_port_alloc defines a callback function to be invoked
in interrupt context whenever a new message arrives at the port (and may be NULL if a
process based approach to receiving is wanted). ICS_port_alloc returns a port handle
for use in subsequent functions.

ICS_port_free frees up and closes a previously allocated port, including de-registering
its name from the global name server.

ICS_msg_send is used to send a message to a port, based on a handle obtained from a
local allocation or through a lookup of a port name. The message data is presented as a
virtual address in an argument to the function. An mflags argument allows the caller to
control how the data is transferred and how it is presented to the target receiver: for
example, if the data is to be copied inline or if a buffer has been provided which allows the
transfer to be done using zero-copy techniques.

There are two approaches to receiving a message from a port: process or interrupt based.

Interrupt based receiving uses the callback function defined at port allocation time, which
has prototype:

ICS_ERROR (*ICS_PORT_CALLBACK) (ICS_PORT port, ICS_VOID *param,
ICS_MSG_DESC *rdesc)

The callback function is supplied with a parameter defined by the ICS_port_alloc call,
plus a pointer to a message descriptor which supplies the data sent. Normally the handler
will process the message and return ICS_SUCCESS. If the handler is unable to consume the
buffer it will return I¢cs _FULL and the message will be held on the port message queue
after which ICS_msg_recv or ICS_msg_post must be called to process the message.

The functions ICS_msg_recv, ICS_msg_post, ICS_msg_cancel, ICS_msg_test and
ICS_msg_wait are used for receiving from a process. ICS_msg_recv can be used to
synchronously receive a message from a port; it blocks on the port and returns a new
message in a message descriptor when it arrives. ICS_msg_post posts an asynchronous
receive operation to the port, supplies a message descriptor to hold the message when it
arrives and returns an event handle which can be used by ICS_msg_test and
ICS_msg_wait to test or wait for the arrival of the message. ICS_msg_cancel can be
used to cancel an asynchronous port receive operation.

Note: New incoming messages will always be matched to the posted receiving descriptors in the
order the I1CS_msg_post functions were called.
114/216 8182595 Rev C I‘YI
©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 117/218

Multicom 4 Overview of the inter-core system (ICS)

5.5 Memory region management

Functions are provided in ICS to manage memory regions in the SoC’s memory; these can
be defined and mapped for use by all the CPUs, allowing common regions of physical
memory to be accessible by all CPUs, and facilitating zero-copy message-passing between
the CPUs. A memory region must be aligned on an ICS page size boundary and the size
must be a multiple of the ICS page size (ICS_PAGE_SIZE).

Table 16. Memory region mapping functions

Function name Description
ICS_region_add Add a region to the local and remote CPU region tables
ICS_region_remove Remove a region from the local and remote CPU region tables
ICS_region_virt2phys Translate a local virtual address into a physical one
ICS_region_phys2virt Translate a physical memory region address into a virtual address

ICS_region_add registers and maps a memory region in both the local CPU and the
remote CPUs. Given a virtual address, physical address, size, some memory attributes
supplied as flags, and a set of CPUs defined in a bitmask, it sets up the region and also
returns a region handle which can later be used to remove the region (by
ICS_region_remove).

ICS_region_virt2phys translates a local CPU virtual address into a physical address,
and ICS_region_phys2virt translates a physical address in a defined region into a local
CPU virtual address by making use of the region tables created.

Once a memory region has been registered, addresses within that region can be used in
calls to ICS_msg_send to allow a message to be sent using zero-copy techniques. This
effectively transfers ownership of the buffer (passed to ICS_msg_send) to the receiving
CPU which can then process it. It is the programmer’s responsibility to manage the
subsequent release of that memory.

The memory regions are shown in Figure 10.

KYI 8182595 Rev C 115/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595

REVISION C

CONTROLLED DOCUMENT (Check latest revision)

Overview of the inter-core system (ICS)

DATE 28-FEB-2011 page: 118/218

Multicom 4

116/216

Figure 10. Multicom memory regions

CPU #0 virtual memory

Region 1
cached

Region 1
uncached

Region 2
cached

Region 2
uncached

Region 3
cached

Region 3
uncached

Physical memory

Virtual to

hysical

Region 1

Region 2

Region 3

CPU#1 virtual memory

Physical to
virtual Region 1
cached

Region 1
uncached

Region 2
cached

Region 2
uncached

Region 3
cached

Region 3
uncached

8182595 Rev C

©Copyright STMicroelectronics

N/A

Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 119/218

Multicom 4

Overview of the inter-core system (ICS)

5.6

5.7

Name server

The ICS port model is based on named port handles which can be looked up using a central
name server. This name service has also been exported as a primary API so that
programmers can register other data objects and associate them with an ASCII string.

Table 17. Name server functions

Function name Description
ICS_nsrv_add Add a named object with the name server
ICS_nsrv_remove Remove an object from the name server
ICS_nsrv_lookup Look up a named object in the name server

Functions are provided to add, remove and look up names in the central name server.
Lookups return the associated object handle if a match is found. Lookups can also be
specified to block if a name is not found, in which case they will only return once that name
is registered or a specific timeout period has expired. This facility can be used to build
synchronization points between the ICS CPUs.

Dynamic module loading

ICS provides functions for dynamically loading and unloading code modules on a
companion CPU. These are distinct from the basic functions described earlier for loading an
initial ELF file into a CPU and starting it. The dynamic code loading functions assume that
the ICS code is already running in the CPUs and are intended to add and start a new load
module on the companion CPU at run-time. They are intended for applications where the
code running in the companions is to be determined at run-time or to be modified and
augmented as the application runs. The intention is that load modules can be used to
modularize the software running on the ICS companion CPUs, avoiding large statically-
linked firmware binaries having to be built for each CPU.

Load modules are expected to be relocatable ELF library files which can either be located in
memory or loaded from a filing system.

These functions are built on the r1_1ib library as provided with the ST40 and ST200 Micro
Toolsets, using OS21. See the user manuals for these toolsets, in particular to understand
how the hierarchy of load modules is defined.

Table 18. Dynamic code loading functions

Function name Description

ICS_dyn_load_file Load a dynamic ELF module from a local file

ICS_dyn_load_image Load a dynamic ELF module from a memory image

ICS_dyn_unload Unload a previously loaded dynamic ELF module

ICS_dyn_load_file and ICS_dyn_load_image load a dynamic ELF module, from a
local file or from a memory image respectively, for a specified target CPU. They load and
relocate the code for the target CPU, dynamically linking it against the parent module if one
is specified. The functions return a module handle for use as a parent in subsequent load
operations or for use by ICS_dyn_unload.

8182595 Rev C 117/216

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595

REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

Overview of the inter-core system (ICS) Multicom 4

5.8

Note:

118/216

Once a dynamic module is loaded the ICS system will automatically call a module_init
entry in the loaded module, if present. On unloading, a module_term entry will be called, if
present.

CPU watchdog support

ICS supports a requirement to detect and recover from software failures on companion
CPUs during execution, typically to be managed by the application on the master CPU. The
scenario supported is when one of the companion CPUs stops operating and
communicating as a result of a software failure. The recovery action required is typically for
the master to reload and restart the companion CPU and then re-establish the ICS
connections, while the rest of the ICS system continues to run.

The 1CS_cpu_init call takes a flag (ICS_INIT WATCHDOG) which installs a system
watchdog callback for each CPU present. This watchdog will be triggered whenever a CPU
failure is detected and it will automatically call 1CS_cpu_disconnect.

ICS also provides functions to install and manage a watchdog monitoring a set of CPUs for
failure, and functions for disconnecting from a failed CPU and then re-connecting after it has
been re-initialized. A watchdog is triggered whenever one of the monitored CPUs fails to
update an internal counter within a fixed time period. This provides a fairly coarse-grained
level of monitoring that will detect CPU crashes. However, it will not detect errors where a
software bug is causing no useful work or progression to be made. Such levels of fault
detection will be required to be implemented at a higher level, such as in the MME system.

Table 19. Failure management functions

Function name Description

ICS_watchdog_add Install a CPU watchdog handler

ICS_watchdog_remove Remove a previously installed watchdog handler

ICS_watchdog_reprime Re-prime a triggered watchdog callback

ICS_cpu_connect Connect to a CPU allowing ICS communication after a disconnect

ICS_cpu_disconnect Disconnect ICS communication from a CPU

ICS_watchdog_add installs a watchdog to monitor the operations of the set of CPUs
defined by a CPU bitmask. It defines a callback function to be called when a CPU in the
monitored set stops operating.

The callback function for a watchdog has the prototype:

void (*ICS_WATCHDOG_CALLBACK) (ICS_WATCHDOG handle,
ICS_VOID *param, ICS_UINT cpuNum)

The callback function is supplied with a parameter defined in the watchdog_add call, the
handle of the relevant watchdog, and the CPU whose failure caused the watchdog to fire.
Once the callback has been triggered for a particular CPU it will not fire again until
ICS_watchdog_reprime has been called for that CPU.

Once failure of a CPU has been reported by a watchdog, the application should call
ICS_cpu_disconnect to free up any resources associated with that CPU connection. The
application should then proceed to re-load and restart the program running on that CPU,
either using the ICS ics_cpu_ functions or other libraries available for this purpose. Once

8182595 Rev C I‘YI

page: 120/218

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595

REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

Multicom 4 Overview of the inter-core system (ICS)

5.9

the CPU has been restarted, the application should call ICS_cpu_connect to re-establish
communications with the re-started CPU. Then the watchdog for that CPU should be re-
primed using ICS_watchdog_reprime.

Debug logging support

ICS provides a debugging facility where all text output from the running CPU cores is logged
to a cyclic buffer. Functions are provided to dump out these logs on a per CPU basis, hence
allowing diagnosis of issues when a multi-core debugger session is not possible.

Table 20.

Function name Description

ics_debug_flags Set the debug logging flags

ics_debug_chan Set the debug logging output channel

ICS_debug_dump Dump out the debug log

ics_debug_flags and ics_debug_chan are used to set up the debugging system prior
to ICS_cpu_init being called. ics_debug_flags defines the subsystems of ICS for
which debug logging is required. ics_debug_chan determines whether debugging is
logged to stdout, stderr, or to a cyclic buffer in memory. 1CS_debug_dump is called
while ICS is running and dumps out all the messages logged to the cyclic buffer of that CPU.

8182595 Rev C 119/216

page: 121/218

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011
Inter-core system (ICS) API Multicom 4
6 Inter-core system (ICS) API

This chapter describes the ICS API in terms of its functions and macros.

The functions are listed in alphabetical order. Functions beginning with “ics_" are listed in
Section 6.1: ics_ function definitions and functions beginning with “Ics_" are listed in
Section 6.2: ICS_ function definitions on page 143. Macro definitions are listed in

Section 6.3: Macro definitions on page 194.

Note: The function ICS_cpu_init or ics_cpu_init must be called on the current CPU before
any function beginning with I1CS_ is called.

6.1 ics_

function definitions

This section provides detailed descriptions of the ics_ functions.

ics_cpu_init

Definition:

Arguments:

Returns:

Errors:

Context:

Definition:

120/216

Initialize the ICS system on a CPU

#include <ics.h>

ICS_ERROR ics_cpu_init (ICS_UINT cpuNum, ICS_VLONG cpuMask,
ICS_UINT flags)

cpuNum The logical CPU number of calling CPU.
cpuMask Bitmask of participating CPUs.

flags Debug channel flag bits, see Table 21.
ICS_SUCCESS Successfully initialized.

ICS_ALREADY_INITIALISED ICS is already initialized.

ICS_ENOMEM Failed memory/resource allocation.
ICS_SYSTEM_ERROR A system error occurred.
ICS_SYSTEM_TIMEOUT Failed to synchronize with other CPUs.

Callable from task context only.

ics_cpu_init () is provided primarily for debugging purposes where a subset of
CPUs is being tested. For example, just a pair of CPUs could be specified in the
bitmask. It is recommended that the function ICS_cpu_init on page 156 is adopted as
the usual method of initializing the ICS system,

ics_cpu_init () can be called to start the ICS system on each participating CPU.
If used, it must be called before any of the other 1Cs_ functions are called. It should
be called from a task context and only be called once per CPU.

cpuNum is the logical CPU number of the calling CPU. ics_cpu_self () can be
used to determine this value.

8182595 Rev C I‘YI

page: 122/218

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C

Multicom 4

CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 123/218

Inter-core system (ICS) API

cpuMask is a bitmask of all the required CPUs, this can be a subset of all the CPUs
on the SoC.

The set of valid debug channel flag bits are detailed in Table 21.

Table 21. ics_cpu_init flags

Init flag Description
ICS_INIT_CONNECT_ALL Connect to all CPUs in the bitmask during initialization
ICS_INIT_WATCHDOG Enable the CPU watchdog for all CPUs in the bitmask

Setting the flag bit value ICS_INIT_CONNECT_ALL in the callto ics_cpu_init ()
causes the calling CPU to attempt to connect and synchronize with all the other CPUs
which are present in the supplied CPU bitmask. It blocks until all the other CPUs have
also called ics_cpu_init (). If one or more of the other CPU fails to call
ics_cpu_init () then the operation fails after a pre-defined timeout period.

Setting the flag bit value ICS_INIT WATCHDOG causes the ICS system to monitor all
the CPUs in the bitmask. If any one of them fails, an automatic callback is triggered
on the local CPU which, in turn, disconnects the failed CPU from further
communication.

See also: ICS_cpu_init
'S7i 8182595 Rev C 121/216
©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 124/218

Inter-core system (ICS) API Multicom 4
ics_cpu_lookup Query the BSP/Registry for CPU number
Definition: #include <ics.h>

int ics_cpu_lookup (const ICS_CHAR *cpuName)

Arguments:
cpuName Name of CPU being queried.
Returns: A logical CPU number, if one is found.
Errors:
-1 CPU name not found.
Context: Callable from task and interrupt context. Can be called before ICS_cpu_init ().
Description: ics_cpu_lookup () provides a mechanism for converting the symbollic names of
the CPUs (for example “audio”, “video”) into their logical ICS CPU numbers.
An ICS system is made up of one or more logical CPUs. It is assumed that there is
always a master CPU, whose logical CPU number is 0. It is also assumed that the
ICS master CPU will be always booted before the others and that it will always be
running.
cpuName should be a ’\ 0’ terminated ASCII string.
Examples of BSP/Registry tables are given in Table 22 and Table 23.
Table 22. Example STi7200 (MB519) BSP/Registry
Logical CPU CPU name CPU type
0 "st40" "st40"
1 "videoO" "st231"
2 "audiol" "st231"
3 "videol" "st231"
4 "audiol" "st231"
Table 23. Example STi7141 (MB628) BSP/Registry
Logical CPU CPU name CPU type
0 "estb" "st40"
1 "ecm" "st40"
2 "video" "st231"
3 "audio" "st231"
See also: ics_cpu_name
ics_cpu_type.
122/216 8182595 Rev C ‘ﬁ

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 125/218
Multicom 4 Inter-core system (ICS) API
ics_cpu_mask Query the logical CPU bitmask
Definition: #include <ics.h>

ICS_ULONG ics_cpu_mask (void)

Arguments: None

Returns: A logical ICS CPU bitmask.

Errors: None

Context: Callable from task and interrupt context. Can be called before I1CS_cpu_init ().

Description: Returns the logical CPU bitmask of the running system. Each set bit n representing
that logical CPU number n is present. This information is determined by querying the
BSP/Registry of the running system.
Normally this bitmask will be fulling populated, that is, for an N CPU system all bit
positions from 0 to N-1 will be set. However, for debugging purposes it may be
partially populated.

See also: ics_cpu_lookup (for details of the ICS logical CPU numbering system).

'S7i 8182595 Rev C 123/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C

CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

Inter-core system (ICS) API Multicom 4
ics_cpu_name Query the BSP/Registry for CPU name
Definition: #include <ics.h>

const char *ics_cpu_name (ICS_UINT cpuNum)

page: 126/218

Arguments:
cpuNum Logical CPU number being queried.
Returns: BSP CPU name string.
Errors:
NULL CPU not found.
Context: Callable from task and interrupt context. Can be called before ICS_cpu_init ().
Description: ics_cpu_name () returns the CPU name string associated with the logical CPU
number. Examples of BSP/Registry tables are given in Table 22 on page 122 and
Table 23 on page 122.
See also: ics_cpu_lookup
ics_cpu_type
124/216 8182595 Rev C ﬁ
©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 127/218

Multicom 4 Inter-core system (ICS) API
ics_cpu_reset Reset and stop CPU execution
Definition: #include <ics.h>

ICS_ERROR ics_cpu_reset (ICS_UINT cpulNum,
ICS_UINT flags)

Arguments:
cpuNum Logical CPU number being reset.
flags Various flag bits which affect behavior.
Returns:
ICS_SUCCESS CPU reset was issued successfully.
Errors:
ICS_INVALID_ARGUMENT An invalid argument was supplied.
Context: Callable from task and interrupt context. Can be called before 1CS_cpu_init ().
Description: ics _cpu_reset () resets the logical CPU and stops execution. This is an
asynchronous operation, and how soon the CPU stops executing code is system
dependant.
It is an invalid operation to attempt to do this against the logical calling CPU number.
cpuNum should be a valid logical CPU number.
Currently no £1lags bits are defined and this parameter must be set to zero.
ﬁ 8182595 Rev C 125/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C

CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 128/218

Inter-core system (ICS) API Multicom 4

ics_cpu_self

Query the logical CPU number

Definition: #include <ics.h>
ICS_INT ics_cpu_self (void)

Arguments: None

Returns: The logical ICS CPU number of the calling CPU.

Errors: Returns -1 if there was an error.

Context: Callable from task and interrupt context. Can be called before 1CS_cpu_init ().

Description: Returns the logical CPU number of the calling CPU. This information is determined by
querying the BSP/Registry of the running system.
An ICS system is made up of one or more logical CPUs numbered 0 to N-1, where N
is the total number of CPUs in the system. It is assumed that there is always a master
CPU, whose logical CPU number is 0.

See also: ics_cpu_lookup (for details of the ICS logical CPU numbering system).

126/216 8182595 Rev C ‘ﬁ

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 129/218
Multicom 4 Inter-core system (ICS) API
ics_cpu_start Start execution of a CPU
Definition: #include <ics.h>

ICS_ERROR ics_cpu_start (ICS_OFFSET entryAddr,
ICS_UINT cpulNum,
ICS_UINT flags)

Arguments:
entryAddr CPU execution start address.
cpuNum Logical CPU number of CPU being started.
flags Various flag bits which affect behavior.
Returns:
ICS_SUCCESS CPU start was issued successfully.
Errors:
ICS_INVALID_ARGUMENT An invalid argument was supplied.
Context: Callable from task and interrupt context. Can be called before ICS_cpu_init ().
Description: ics_cpu_start () causes the logical CPU cpuNum to be started, with execution
beginning at the supplied address. This is an asynchronous operation, and how soon
the CPU starts executing code is system dependant .
It is an invalid operation to attempt to issue this call against the calling logical CPU
number.
entryAddr should be a valid code start address for the target CPU. See
ics_load_elf_file() andics_load_elf_image().
cpuNum should be the logical ICS CPU number of the CPU to be started.
Currently no £1lags bits are defined and this parameter must be set to zero.
ﬁ 8182595 Rev C 127/216
©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C

CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

Inter-core system (ICS) API Multicom 4
ics_cpu_type Query the BSP/Registry for CPU type
Definition: #include <ics.h>

const char *ics_cpu_type (ICS_UINT cpuNum)

page: 130/218

Arguments:
cpuNum Logical CPU number being queried.
Returns: BSP CPU type string.
Errors:
NULL CPU not found.
Context: Callable from task and interrupt context. Can be called before ICS_cpu_init ().
Description: ics_cpu_type () returns the CPU type string associated with the logical CPU
number. Examples of BSP/Registry tables are given in Table 22 on page 122 and
Table 23 on page 122.
See also: ics_cpu_lookup
ics_cpu_name
128/216 8182595 Rev C ﬁ
©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 131/218
Multicom 4 Inter-core system (ICS) API
ics_cpu_version Query the ICS system version string
Definition: #include <ics.h>

const ICS_CHAR * ics_cpu_version (void)

Arguments: None.
Returns: A pointer to the ICS version string.
Errors: None.
Context: Callable from task and interrupt context. Can be called before 1CS_cpu_init ().
Description: Return a pointer to the ICS version string.
This string takes the form:
major number.minor number.patch number [: text]
That is, a major, minor and release number, separated by decimal points, and
optionally followed by a colon and a text string.
ﬁ 8182595 Rev C 129/216
©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 132/218

Inter-core system (ICS) API Multicom 4
ics_debug_chan Set the debug logging output channel
Definition: #include <ics.h>

void ics_debug_chan (ICS_UINT flags)

Arguments:
flags Bitmask of debug channel flags.
Returns: None
Errors: None
Context: Callable from task and interrupt context. Can be called before 1CS_cpu_init ().
Description: ics_debug_chan () sets the debug output channel of the ICS system. The ICS

debug libraries are built with conditional debugging enabled for each subsystem.
Each subsystem logs debug and error messages depending on the flags set by
ics_debug_flags (). The output ‘channel for these debug message is controlled
by calling this function. The set of valid debug channel flag bits are detailed in
Table 24. These are encoded as bitmask values and hence combinations such as
ICS_DBG_STDOUT | ICS_DBG_LOG are permitted.

Table 24. ICS debug channel flags

Channel flag Description
ICS_DBG_STDOUT Log all messages to console/STDOUT
ICS_DBG_STDERR Log all message to console/STDERR
ICS_DBG_LOG Log all messages to cyclic buffer

Note: The ICS library is built with the debug channel set to ICS_DBG_LOG by default.

J

130/216 8182595 Rev C

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 133/218

Multicom 4 Inter-core system (ICS) API
ics_debug_flags Set the debug logging flags
Definition: #include <ics.h>

typedef enum

{
ICS_DBG_ERR = 0x0001,
ICS_DBG_INIT = 0x0002,
ICS_DBG_CHN = 0x0004,
ICS_DBG_MAILBOX = 0x0008,

ICS_DBG_MSG = 0x0010,

ICS_DBG_ADMIN = 0x0020,
ICS_DBG_PORT = 0x0040,
ICS_DBG_NSRV = 0x0100,
ICS_DBG_WATCHDOG = 0x0200,

ICS_DBG_STATS = 0x0400,

ICS_DBG_HEAP = 0x1000,
ICS_DBG_REGION = 0x2000,
ICS_DBG_LOAD = 0x4000,

ICS_DBG_DYN = 0x8000
} ICS_DBG_FLAGS;

void ics_debug_flags (ICS_UINT flags)

Arguments:
flags Bitmask of debugging flags.
Returns: None
Errors: None
Context: Callable from task and interrupt context. Can be called before 1CS_cpu_init ().
Definition: ics_debug_flags () sets the debug logging level of the ICS system. The ICS
debug libraries are built with conditional debugging enabled for each subsystem. In
order to log the debug messages from a particular subsystem the corresponding bit
the debug flags needs to be set by using this function. The valid set of debug flag bits
are detailed in Table 25.
Table 25. ICS debug logging flags
Debug flag Description
ICS_DBG_ERR Log all error messages
ICS_DBG_INIT Log initialization actions
ICS_DBG_CHN Log channel actions
ICS_DBG_MAILBOX Log mailbox actions
ICS_DBG_MSG Log message actions
ICD_DBG_ADMIN Log administration actions
ICS_DBG_PORT Log port actions
ICS_DBG_NSRV Log name server actions
ICS_DBG_WATCHDOG Log watchdog actions
ﬁ 8182595 Rev C 131/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 134/218

Inter-core system (ICS) API Multicom 4

Table 25. ICS debug logging flags (continued)

Debug flag Description
ICS_DBG_HEAP Log heap actions
ICS_DBG_REGION Log region actions
ICS_DBG_LOAD Log load actions
ICS_DBG_DYN Log dynamic loader actions
132/216 8182595 Rev C ﬁ

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C

Multicom 4

CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 135/218

Inter-core system (ICS) API

ics_err_str

Returns an ICS error string

Definition: #include <ics.h>
const ICS_CHAR * ics_err_str (ICS_ERROR err)
Arguments:
err An ICS_ERROR error code.
Returns: A pointer to the corresponding ICS error string.
Errors: None
Context: Callable from task and interrupt context. Can be called before I1CS_cpu_init ().
Description: ics_err_str () returns a pointer to the corresponding ICS error string based on the
supplied err code. This function is a useful way to display/log a text string describing
the ICS error code when an error occurs.
err should be a valid ICS error code as returned by an ICS API function.
Ay 8182595 Rev C 133/216
©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011
Inter-core system (ICS) API Multicom 4
ics_heap_alloc Allocate a buffer from an ICS memory heap
Definition: #include <ics.h>

ICS_VOID *ics_heap_alloc (ICS_HEAP heap,
ICS_SIZE size,
ICS_MEM_FLAGS mflags)

page: 136/218

Arguments:
heap Heap from which to allocate the buffer.
size Size of the buffer in bytes.
mflags Memory region attributes.

Returns: Non NULL address of the buffer allocated.

Errors: NULL is returned on error.

Context: Callable from task context only. Can be called before ICS_cpu_init ().

Description: ics_heap_alloc () allocates a buffer of size bytes from a heap previously created
with ics_heap_create (). When all resources from the heap are exhausted, NULL
will be returned. Both cached and uncached translations of the heap buffers can be
obtained by specifying the relevant flag in the mf1ags parameter.
To avoid cache coherency issue between the CPUs, all buffers allocated will be
ICS_CACHELINE_SIZE aligned.
size is the size in bytes of the buffer to be allocated. The actual size allocated will be
rounded up by the heap allocator for cache coherency and alignment constraints.
mflags specifies the memory attributes of the buffer being requested. Valid values
are ICS_CACHED and ICS_UNCACHED.

134/216 8182595 Rev C 1S7]

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C

CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 137/218

Multicom 4 Inter-core system (ICS) API
ics_heap_base Query ICS heap for virtual base
Definition: #include <ics.h>
ICS_VOID *ics_heap_base (ICS_HEAP heap, ICS_MEM_ FLAGS mflags)
Arguments:
heap Heap handle.
mflags Request cached or uncached mapping.
Returns: Associated heap parameter.
Errors:
NULL Virtual base address of heap not found.
Context: Callable from task context only. Can be called before ICS_cpu_init ().
Description: ics_heap_base () returns the virtual base address of the supplied ICS heap.
This is one of three functions that allow the caller to query the base and size of an ICS
heap, these calls are useful for presenting to the ICS region management code.
Doing this allows local heaps to be mapped into the remote CPUs so that it can be
used for zero-copy message passing and buffer sharing.
heap should be a valid heap handle as allocated with ICS_heap_create ().
Valid mflags values are ICS_CACHED and ICS_UNCACHED.
See also: ics_heap_pbase
ics_heap_size
ﬁ 8182595 Rev C 135/216

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 138/218

Inter-core system (ICS) API Multicom 4
ics_heap_create Create an ICS heap
Definition: #include <ics.h>

ICS_ERROR ics_heap_create (ICS_VOID *heapBase,
ICS_SIZE heapSize,
ICS_UINT flags,
ICS_HEAP *heapp)

Arguments:
heapBase Optional base address of heap.
heapSize Size in bytes of heap being created.
flags Various flag bits which affect behavior.
heapp Heap handle pointer used to return allocated handle.
Returns:
ICS_SUCCESS CPU start was issued successfully.
heapp Allocated heap handle.
Errors:
ICS_INVALID_ARGUMENT An invalid argument was supplied.
ICS_ENOMEM Failed memory/resource allocation.
ICS_SYSTEM_ERROR A system error occurred.
Context: Callable from task context only. Can be called before ICS_cpu_init ().
Description: ics_heap_create () creates a heap from a contiguous physical memory region.
This heap can then be used to allocate and free buffers.
heapBase can be supplied by the caller if a physically contiguous memory region has
already been allocated, otherwise NULL should be supplied. If a memory region
address is supplied, then it must be ICS_PAGE_SIZE aligned.
heapsSize is the size of the heap to be created in bytes. This value must be a whole
multiple of ICS_PAGE_SIZE.
Currently no £1lags bits are defined and this parameter must be set to zero.
heapp is a pointer to an TCS_HEAP descriptor in which the allocated heap handle is
returned.
136/216 8182595 Rev C ﬁ

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 139/218

Multicom 4 Inter-core system (ICS) API
ics_heap_destroy Destroy an ICS heap
Definition: #include <ics.h>

ICS_ERROR ics_heap_destroy (ICS_HEAP heap,
ICS_UINT flags)

Arguments:
heap Heap handle.
flags Various flag bits which affect behavior.
Returns:
ICS_SUCCESS Successfully destroyed heap.
Errors:
ICS_INVALID_ARGUMENT An invalid argument was supplied.
ICS_HANDLE_INVALID An invalid handle was supplied.
ICS_SYSTEM_ERROR A system error occurred.
Context: Callable from task context only. Can be called before ICS_cpu_init ().
Description: ics_heap_destroy () should be called to destroy a heap previously created with
ics_heap_create (). It will release all resources associated with the heap. All
allocated buffers must have been returned to the heap before it is destroyed.
heap should be a valid heap handle.
Currently no £1lags bits are defined and this parameter must be set to zero.
ﬁ 8182595 Rev C 137/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 140/218
Inter-core system (ICS) API Multicom 4
ics_heap_free Release a buffer back to an ICS heap
Definition: #include <ics.h>

ICS_ERROR ics_heap_ free (ICS_HEAP heap,
ICS_VOID *buffer)

Arguments:
heap Heap handle.
buffer Buffer address.
Returns:
ICS_SUCCESS Successfully freed buffer.
Errors:
ICS_INVALID_ARGUMENT An invalid argument was supplied.
ICS_HANDLE_INVALID An invalid handle was supplied.
ICS_SYSTEM_ERROR A system error occurred.
Context: Callable from task context only. Can be called before ICS_cpu_init ().
Description: ics_heap_free () returns a previously allocated buffer to the heap. The buffer
address supplied must be the exact one supplied by ics_heap_alloc().
heap should be a valid ICS heap handle and be associated with the returned buffer
address.
buf fer should be a valid address, previously returned by I1CS_heap_alloc ().
138/216 8182595 Rev C ﬁ
©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 141/218
Multicom 4 Inter-core system (ICS) API
ics_heap_pbase Query ICS heap for physical base
Definition: #include <ics.h>

ICS_OFFSET ics_heap_pbase (ICS_HEAP heap)

Arguments:
heap Heap handle.

Returns: Associated heap parameter.

Errors:
ICS_BAD_OFFSET Physical base address of heap not found.

Context: Callable from task context only. Can be called before ICS_cpu_init ().

Description: ics_heap_pbase () returns the physical address base of the supplied ICS heap.
This is one of three functions that allow the caller to query the base and size of an ICS
heap, these calls are useful for presenting to the ICS region management code.
Doing this allows local heaps to be mapped into the remote CPUs so that it can be
used for zero-copy message passing and buffer sharing.
heap should be a valid heap handle as allocated with ICS_heap_create ().

See also: ics_heap_base
ics_heap_size

ﬁ 8182595 Rev C 139/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 142/218

Inter-core system (ICS) API Multicom 4
ics_heap_size Query ICS heap for size
Definition: #include <ics.h>

ICS_SIZE ics_heap_size (ICS_HEAP heap)

Arguments:
heap Heap handle.
Returns: Associated heap parameter.
Errors:
0 Size of heap not found.
Context: Callable from task context only. Can be called before ICS_cpu_init ().
Description: ics_heap_size () returns the full size of the supplied ICS heap.
This is one of three functions that allow the caller to query the base and size of an ICS
heap, these calls are useful for presenting to the ICS region management code.
Doing this allows local heaps to be mapped into the remote CPUs so that it can be
used for zero-copy message passing and buffer sharing.
heap should be a valid heap handle as allocated with ICS_heap_create ().
See also: ics_heap_base
ics_heap_pbase
140/216 8182595 Rev C ﬁ

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 143/218
Multicom 4 Inter-core system (ICS) API
ics_load_elf _file Load and unpack an ELF file
Definition: #include <ics.h>

ICS_ERROR ics_load_elf_file (const ICS_CHAR *fname,
ICS_UINT flags,
ICS_LOAD *entryAddrp)

Arguments:
fname Local OS filename of ELF file.
flags Various flag bits which affect behavior.
entryAddrp Returns loaded object ELF start/entry address.
Returns:
ICS_SUCCESS Successfully loaded the ELF image.
entryAddrp ELF start/entry address.
Errors:
ICS_NAME_NOT_FOUND Filename was not found.
ICS_INVALID_ARGUMENT An invalid argument or ELF image was supplied.
ICS_ENOMEM Failed memory/resource allocation.
ICS_SYSTEM_ERROR A system error occurred.
Context: Callable from task context only. Can be called before ICS_cpu_init ().
Description: ics_load_elf_file() is used to load an ELF file image on the master CPU and
unpack it so that it can be executed on the Slave/Companion CPUs. On successful
completion, the ELF start/entry address is returned to the caller in the entryaddrp
argument.
fname should be a local OS filename from where the ELF image can be obtained.
Currently no £lags bits are defined and this parameter must be set to zero.
entryAddrp should be a valid pointer to an ICS_OFFSET sized object.
ﬁ 8182595 Rev C 141/216
©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C

CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

Inter-core system (ICS) API Multicom 4
ics_load_elf_image Unpack an ELF memory image
Definition: #include <ics.h>

ICS_ERROR ics_load_elf_image (ICS_CHAR *image,
ICS_UINT flags,
ICS_OFFSET *entryAddrp)

page: 144/218

Arguments:
image Virtual memory address of ELF file image.
flags Various flag bits which affect behavior.
entryAddrp Returns loaded object ELF start/entry address.
Returns:
ICS_SUCCESS Successfully unpacked the ELF image.
entryAddrp ELF code start/entry address.
Errors:
ICS_INVALID_ARGUMENT An invalid argument or ELF image was supplied.
ICS_ENOMEM Failed memory/resource allocation.
ICS_SYSTEM_ERROR A system error occurred.
Context: Callable from task context only. Can be called before ICS_cpu_init ().
Description: ics_load_elf_image () is used to unpack an ELF memory image on the master
CPU so that it can be executed on the Slave/Companion CPUs. On successful
completion the ELF start/entry address is returned to the caller in the entryaddrp
argument.
image should reference a complete ELF file image.
Currently no £lags bits are defined and this parameter must be set to zero.
142/216 8182595 Rev C ﬁ
©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 145/218

Multicom 4 Inter-core system (ICS) API

6.2 ICS_function definitions

This section provides detailed descriptions of the ICS_ functions.

Note: The function ICS_cpu_init or ics_cpu_init must be called on the current CPU before

any function beginning with I1CS__is called.

ICS _channel _alloc Allocate an ICS communications channel

Definition: #include <ics.h>
typedef ICS_ERROR (*ICS_CHANNEL_CALLBACK) (ICS_CHANNEL channel,
ICS_VOID *param,
void *buffer)
ICS_ERROR ICS_channel_alloc (ICS_CHANNEL_CALLBACK callback,
ICS_VOID *param,
ICS_VOID *base,
ICS_UINT nslots,
ICS_UINT ssize,
ICS_UINT flags,
ICS_CHANNEL *channelp)
Arguments:
callback Callback handler function to be associated with this
channel.
param Handle to be supplied to the callback function.
base Optional base memory address of channel.
nslots Number of slots in the channel FIFO.
ssize Slot size in bytes, of each FIFO slot.
flags Various flag bits which affect behavior.
channelp Channel handle pointer used to return allocated
handle.
Returns:
ICS_SUCCESS Successfully allocated channel.
channelp Contains allocated channel handle.
Errors:
ICS_NOT_INITIALISED ICS is not initialized.
ICS_INVALID_ARGUMENT An invalid argument was supplied.
ICS_ENOMEM Failed memory/resource allocation.
ICS_SYSTEM_ERROR A system error occurred.
Context: Callable from task context only.
Description: ICS_channel_alloc () allocates a uni-directional inter-cpu communication
channel on the local CPU. Channels are formed as uni-directional, fixed length
FIFOs. These channels can then be used to send arbitrary byte formatted data
Ay 8182595 Rev C 143/216

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595

CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 146/218

Inter-core system (ICS) API Multicom 4

144/216

between the CPUs. All data successfully inserted into a channel is guaranteed to be
delivered to the target CPU in the order is was sent.

The channel API provides the lowest overhead communication system between the
ICS CPUs. As such it provides a very raw interface, with no protocol being added by
ICS. Programmers can use either interrupt or polling techniques to receive data
through the channels.

callback is a pointer to function of type ICS_CHANNEL_CALLBACK which will be
invoked each time a new entry arrives in the FIFO. It will be invoked in interrupt
context supplying the param and buf fer pointer to a FIFO entry . If callbacks are
not required, then these parameters can be set to NULL. In this case the FIFO
messages can only be retrieved using ICS_channel_recv ().

base is an optional pointer to an area of memory that can be used as the inter-CPU
FIFO channel. As such it must be at least (nslots*ssize) bytes in size and the
address must also be ICS_PAGE_ALIGNED aligned. Supplying a NULL value for this
parameter will cause the call to allocate the memory itself.

nslots is the number of FIFO slots required. It must be greater than one and also a
power of 2 in size.

ssize is the size of each FIFO slot in bytes, it must be a whole multiple of
ICS_CACHELINE_ SIZE.

Currently no £1ags bits are defined and this parameter must be set to zero.

channelp should be a pointer to an ICS_CHANNEL object in which the allocated
channel handle will be returned on successful completion.

J

8182595 Rev C

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 147/218

Multicom 4 Inter-core system (ICS) API
ICS_CHANNEL_CALLBACK Channel callback function
Definition: #include <ics.h>

typedef ICS_ERROR (*ICS_CHANNEL_CALLBACK) (ICS_CHANNEL channel,
ICS_VOID *param,
void *buffer)

Arguments:
channel Handle of associated channel.
param Parameter as supplied with the allocation function.
buffer Channel buffer pointer.
Returns:
ICS_SUCCESS Successfully consumed FIFO buffer.
Errors:
ICS_FULL Failed to consume FIFO buffer.
Context: Called from interrupt context only

Description: This is the channel callback function that is invoked for each entry that is inserted into
the channel FIFO. It will be called using the same param argument as supplied
during ICS_channel_alloc().

The buf fer pointer will point to an area of memory of up to ssize bytes, as
specified during the ICS_channel_alloc () call.

No protocol is added by the ICS channel interface, so the actual buffer size will need
to be determined by the programmer.

Normally the callback function will copy and then consume the FIFO entry by calling
ICS_channel_release (). In this case it should return ICS_SUCCESS.

However, if for some reason it is not possible to consume this entry, then ICS_FULL
should be returned. This will cause the FIFO buffer to be left at the head of the FIFO
(and to block it). No further callbacks will be generated on this channel until it is
subsequently unblocked by a call to ICS_channel_unblock ().

KYI 8182595 Rev C 145/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 148/218

Inter-core system (ICS) API Multicom 4
ICS_channel_close Close a send channel
Definition: #include <ics.h>
ICS_ERROR ICS_channel_close (ICS_CHANNEL_SEND schannel)
Arguments:
schannel Send channel handle.
Returns:
ICS_SUCCESS Successfully closed the send channel.
Errors:
ICS_NOT_INITIALISED ICS not initialized.
ICS_HANDLE_INVALID An invalid send channel handle was supplied.
ICS_SYSTEM_ERROR A system error occurred.
Context: Callable from task context only.
Description: ICS_channel_close () closes a send channel that was previously opened using
ICS_channel_open().
Any channel sends currently in progress will still be delivered to the receiving
channel.
schannel should be a valid send channel handle.
146/216 8182595 Rev C ﬁ

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 149/218
Multicom 4 Inter-core system (ICS) API
ICS_channel_free Free an ICS channel
Definition: #include <ics.h>

ICS_ERROR ICS_channel_ free (ICS_CHANNEL channel,
ICS_UINT flags);

Arguments:
channel Channel handle.
flags Various flag bits which affect behavior.

Returns:

ICS_SUCCESS Successfully freed channel.

Errors:

ICS_NOT_INITIALISED ICS not initialized.
ICS_INVALID_ARGUMENT An invalid argument was supplied.
ICS_HANDLE_INVALID An invalid channel handle was supplied.
ICS_SYSTEM_ERROR A system error occurred.

Context: Callable from task context only.

Description: ICS_channel_free () frees alocal CPU channel previously allocated with
ICS_channel_alloc ().Freeing a channel will cause all resources associated with
it to be freed and also any tasks blocked on the channel to be awoken. Any
unprocessed entries in the FIFO will be ignored.
channel should be a valid channel handle
Currently no £lags bits are defined and this parameter must be set to zero.

ﬁ 8182595 Rev C 147/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C

CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

page: 150/218

Inter-core system (ICS) API Multicom 4
ICS_channel_open Open a send channel for communication
Definition: #include <ics.h>
ICS_ERROR ICS_channel_open (ICS_CHANNEL channel,
ICS_UINT flags,
ICS_CHANNEL_SEND *schannelp)

Arguments:
channel Channel handle.
flags Various flag bits which affect behavior.
schannelp Send channel handle pointer.

Returns:

ICS_SUCCESS Successfully opened the send channel.
schannelp Contains allocated send channel handle.

Errors:

ICS_NOT_INITIALISED ICS not initialized.
ICS_INVALID_ARGUMENT An invalid argument was supplied.
ICS_HANDLE_INVALID An invalid channel handle was supplied.
ICS_NOT_CONNECTED Target CPU is not connected.
ICS_ENOMEM Failed memory/resource allocation.
ICS_SYSTEM_ERROR A system error occurred.

Context: Callable from task context only.

Description: In order to send data using a CPU channel, it must first be opened by calling
ICS_channel_open (). This will allocate an associated send channel handle which
is returned in schannelp.

The channel handle parameter can either be one allocated locally with
ICS_channel_alloc () orone supplied from a different CPU by looking it up (for
example, in the name server) or being supplied the opaque channel handle through
another mechanism.

It is an error to attempt to open multiple send channels to a given channel.
channel should be a valid channel handle as allocated by

ICS_channel_alloc () either on the the local CPU or on a remote one.
Currently no £lags bits are defined and this parameter must be set to zero.
schannelp should be a valid pointer to an ICS_CHANNEL_SEND object.

148/216 8182595 Rev C ﬁ

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 151/218
Multicom 4 Inter-core system (ICS) API
ICS_channel_recv Blocking call to receive a buffer from an ICS channel
Definition: #include <ics.h>

ICS_ERROR ICS_channel_recv (ICS_CHANNEL channel,
ICS_VOID **bufferp,
ICS_LONG timeout)

Arguments:
channel Channel handle.
bufferp Pointer to a buffer pointer.
timeout Time in milliseconds to block waiting for a buffer.

Returns:

ICS_SUCCESS Successfully received a buffer.
bufferp Buffer pointer returned.

Errors:

ICS_NOT_INITIALISED ICS not initialized.
ICS_INVALID_ARGUMENT An invalid argument was supplied.
ICS_HANDLE_INVALID An invalid channel handle was supplied.
ICS_ENOMEM Failed memory/resource allocation.
ICS_SYSTEM_ERROR A system error occurred.
ICS_SYSTEM_TIMEOUT Received timed out.

Context: Callable from task context only.

Description: ICS_channel_recv () blocks on the supplied channel handle awaiting a new FIFO
entry arrival. The channel handle must be a valid local channel as created with
ICS_channel_alloc().
buf ferp should be a pointer to a unique ICS_VOID pointer used to return the
address of the FIFO buffer.
timeout is the amount of time in milliseconds to block, before aborting and
returning ICS_SYSTEM_TIMEOUT.

On successful completion the supplied buf ferp pointer will have been updated with
the new FIFO entry location. This should then be processed by the caller, before
being later released with ICS_channel_release().

No protocol is used within the channel communication system, so it is the
responsibility of the programmer to determine how much data is contained within
each supplied FIFO entry, but obviously it cannot exceed the FIFO slot size that was
used to create the channel.

Ay 8182595 Rev C 149/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 152/218

Inter-core system (ICS) API Multicom 4
ICS_channel _release Release an ICS channel FIFO buffer
Definition: #include <ics.h>

ICS_ERROR ICS_channel_release (ICS_CHANNEL channel,
ICS_VOID *buffer)

Arguments:
channel Channel handle.

buf Buffer pointer.

Returns:
ICS_SUCCESS Successfully released a buffer.

Errors:
ICS_NOT_INITIALISED ICS not initialized.
ICS_INVALID_ARGUMENT An invalid argument was supplied.
ICS_HANDLE_INVALID An invalid channel handle was supplied.
ICS_SYSTEM_ERROR A system error occurred.

Context: Callable from task and interrupt context.

Description: ICS_channel_release () releases a channel buffer back to the FIFO. It should be
called immediately after the caller has processed the FIFO data in order to maintain
the in order nature of FIFO processing.

channel should be a valid channel handle.

buf fer should be the last channel buffer address supplied by
ICS_channel_recv () orthe callback handler.

J

150/216 8182595 Rev C

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595

Multicom 4

REVISION C

CONTROLLED DOCUMENT (Check latest revision)

DATE 28-FEB-2011 page: 153/218

Inter-core system (ICS) API

ICS _channel send

Send a buffer using an ICS send channel

Definition: #include <ics.h>

ICS_ERROR ICS_channel_send (ICS_CHANNEL_SEND schannel,
ICS_VOID *buffer,
ICS_SIZE size,
ICS_UINT flags)

Arguments:
schannel Send channel handle.
buffer Channel buffer pointer.
size Size in bytes of data buffer.
flags Various flag bits which affect behavior.

Returns:

ICS_SUCCESS Successfully sent the buffer.

Errors:

ICS_NOT_INITIALISED ICS not initialized.
ICS_INVALID_ARGUMENT An invalid argument was supplied.
ICS_HANDLE_INVALID An invalid send channel handle was supplied.
ICS_NOT_CONNECTED Target CPU is not connected.

ICS_FULL The channel FIFO was full.

ICS_ENOMEM Failed memory/resource allocation.
ICS_SYSTEM_ERROR A system error occurred.

Context: Callable from task and interrupt context.

Description: ICS_channel_send() sends a data buffer using an open send channel by copying
it into the channel FIFO. On successful return, it is guaranteed that the data will be
received by the target CPU task. All buffers will be delivered in the order they were
sent. The size of the data buffer must not exceed the size of the channel FIFO slots,
as specified in the ICS_channel_alloc () call.

If the channel FIFO is full, then ICS_ FULL will be returned. In this case it is the
programmer's responsibility to re-issue the send once the flow control issue has been
resolved.

schannel should be a valid, open send channel handle as returned by
ICS_channel_open().

buf fer should be a valid virtual address of a data buffer.

size should be the size of the data buffer in bytes. It cannot exceed the size of the
channel FIFO slots.

Currently no £lags bits are defined and this parameter must be set to zero.

Ay 8182595 Rev C 151/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 154/218

Inter-core system (ICS) API Multicom 4
ICS_channel _unblock Unblock blocked ICS channel
Definition: #include <ics.h>

ICS_ERROR ICS_channel_unblock (ICS_CHANNEL channel)

Arguments:
channel Channel handle.

Returns:

ICS_SUCCESS Successfully unblocked the channel.

Errors:

ICS_NOT_INITIALISED ICS not initialized.
ICS_HANDLE_INVALID An invalid channel handle was supplied
ICS_SYSTEM_ERROR A system error occurred.

Context: Callable from task and interrupt context.

Description: ICS_channel_unblock () should be called to unblock a channel that became
blocked due to a channel callback function returning ICSs_FULL. In this case, a buffer
would have been left at the head of the FIFO, blocking all further communications on
that channel.

Until this function is called, no further callback events will be generated on the
blocked channel.

Calling this function with the channel handle of a channel that is not blocked will have
no effect.

152/216 8182595 Rev C 1S7]

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 155/218
Multicom 4 Inter-core system (ICS) API
ICS_cpu_connect Connect to a CPU allowing ICS communication
Definition: #include <ics.h>

ICS_ERROR ICS_cpu_connect (ICS_UINT cpulNum,
ICS_UINT flags,
ICS_LONG timeout)

Arguments:
cpuNum Logical CPU number.
flags Various flag bits which affect behavior.
timeout Connection timeout period.
Returns:
ICS_SUCCESS Successfully connected to CPU.
Errors:
ICS_NOT_INITIALISED ICS not initialized.
ICS_INVALID_ARGUMENT An invalid argument was supplied.
ICS_SYSTEM TIMEOUT Connection timed out.
ICS_SYSTEM_ERROR A system error occurred.
Context: Callable from task context only.
Description: ICS_cpu_connect () connects to a logical CPU so that it can be communicated
with. Normally all logical CPUs are automatically connected during
ICS_cpu_init ().Butinthe case of a CPU failure, they are disconnected by calling
ICS_cpu_disconnect (). Once the failed CPU has been restarted, the
programmer should call ICS_cpu_connect () to re-enable communications with
that CPU.
cpuNum is the logical CPU number for which the connection is required.
Currently no £lags bits are defined and this parameter must be set to zero.
ﬁ 8182595 Rev C 153/216
©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 156/218

Inter-core system (ICS) API Multicom 4
ICS_cpu_disconnect Disconnect ICS communication from a CPU
Definition: #include <ics.h>

ICS_ERROR ICS_cpu_disconnect (ICS_UINT cpulNum,
ICS_UINT flags)

Arguments:
cpuNum Logical CPU number.
flags Various flag bits which affect behavior.
Returns:
ICS_SUCCESS Successfully disconnected from CPU.
Errors:
ICS_NOT_INITIALISED ICS not initialized.
ICS_INVALID_ARGUMENT An invalid argument was supplied.
ICS_NOT_CONNECTED Target CPU is not connected.
ICS_SYSTEM_ERROR A system error occurred.
Context: Callable from task context only.

Description: ICS_cpu_disconnect () disconnects from a logical CPU so that it can no longer
be communicated with. This call also frees up all local and remote resources
associated with that CPU connection. ICS_cpu_disconnect () should be called
when a CPU fails or crashes, doing so will then enable a new connection to be made
once the CPU has been restarted.

cpuNum is the logical CPU number for which the disconnection is required.

Setting the TCS_CPU_DEAD bit of f1ags causes the disconnect to avoid
communicating with the failed CPU. This bit should be set in the case of
disconnecting from a failed CPU.

Note: Setting the ICS_INIT_WATCHDOG bif value in the call to ICS_cpu_init () or
ics_cpu_init () enables an automatic callback when a CPU failure is detected. In the
case of a failure, ICS_cpu_disconnect () is called automatically for the failed CPU.

g

154/216 8182595 Rev C

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 157/218

Multicom 4 Inter-core system (ICS) API
ICS_cpu_info Query the ICS CPU configuration
Definition: #include <ics.h>

ICS_ERROR ICS_cpu_info (ICS_UINT *cpuNump,
ICS_ULONG *cpuMaskp)

Arguments:
cpuNump Return parameter for CPU number.
cpuMaskp Return parameter for CPU mask.

Returns:
ICS_SUCCESS Call was successful.

Errors:
ICS_NOT_INITIALISED ICS is not initialized.
ICS_INVALID_ARGUMENT Invalid arguments supplied.

Context: Callable from task and interrupt context.

Description: ICS_cpu_info () queries the CPU info of the currently running ICS system. On
success, the ICS CPU number of the current CPU and a bitmask representing each
CPU present, will be returned using the supplied parameters. In the returned bitmask,
each set bit n represents that logical CPU number nis present.
cpuNump should be a valid pointer to an ICS_UINT sized object in which the logical
CPU number will be returned.
cpuMaskp should be a valid pointer to an ICS_ULONG sized object in which the
logical CPU bitmask will be returned.

'S7i 8182595 Rev C 155/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 158/218

Inter-core system (ICS) API Multicom 4
ICS_cpu_init Initialize the ICS system on a CPU
Definition: #include <ics.h>

ICS_ERROR ICS_cpu_init (ICS_UINT flags)

Arguments:
flags Various flag bits which affect behavior.

Returns:
ICS_SUCCESS Successfully initialized.

Errors:
ICS_ALREADY_ INITIALISED ICS is already initialized.
ICS_ENOMEM Failed memory/resource allocation.
ICS_SYSTEM_ERROR A system error occurred.
ICS_SYSTEM_TIMEOUT Failed to synchronize with other CPUs.

Context: Callable from task context only.

Definition: ICS_cpu_init () is the recommended function for initializing the ICS and should be
used to start the ICS system on each participating CPU. It must be called before any
of the other 1Cs_ functions are called. It should be called from task context and only
be called once per CPU.

ICS_cpu_init () when called with the TCS_INIT_CONNECT_ALL flag bit value,
causes the calling CPU to attempt to connect and synchronize with all the other CPUs
which are present in the CPU bitmask (as derived from the BSP). It will block until all
the other CPUs have also called I1CS_cpu_init (). If one or more of the other CPU
fails to call 1cS_cpu_init () then the operation will fail after a pre-defined timeout
period.
For the valid set of f1ags bits please refer to the ics_cpu_init () function.
156/216 8182595 Rev C 1S7]

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 159/218
Multicom 4 Inter-core system (ICS) API
ICS_cpu_term Terminate the ICS system on a CPU
Definition: #include <ics.h>

void ICS_cpu_term (ICS_UINT flags)

Arguments:
flags Various flag bits which affect behavior.

Returns: None.

Errors: None.

Context: Callable from task context only.

Description: ICS_cpu_term() will terminate the ICS system. It should be called when a CPU is
being shutdown and no longer requires the ICS system. Calling it multiple times or
when ICS_cpu_init () has not been previously called will have no effect.

This function will terminate all tasks and release all resources associated with the
local ICS system. For example, open ports and allocated regions will be closed and
removed.

Currently no fl1ags bits are defined and this parameter must be set to zero.

Ay 8182595 Rev C 157/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 160/218

Inter-core system (ICS) API Multicom 4
ICS_debug_dump Dump out the debug log
Definition: #include <ics.h>

ICS_ERROR ICS_debug_dump (ICS_UINT cpuNum)

Arguments:
cpuNum Logical CPU number.

Returns:

ICS_SUCCESS Successfully dumped the log.

Errors:

ICS_NOT_INITIALISED ICS not initialized.
ICS_INVALID_ARGUMENT An invalid argument was supplied.
ICS_NOT_CONNECTED Target CPU is not connected.
ICS_SYSTEM_ERROR A system error occured.

Context: Callable from task context only.

Description: ICS_debug_dump () dumps out all the log messages for the logical CPU cpuNum.
When linked against the debug ICS libraries each subsystem can be set to log
messages by calling the ics_debug_flags () function. If the debug channel has
also been set (using ics_debug_chan ()) to enable logging to the cyclic buffer, then
these messages will be displayed by calling this function.

158/216 8182595 Rev C 1S7]

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 161/218
Multicom 4 Inter-core system (ICS) API
ICS_dyn_load_file Load a dynamic ELF module from a local file
Definition: #include <ics.h>

Arguments:

Returns:

Errors:

Context:

Description:

ICS_ERROR ICS_dyn_load_file (ICS_UINT cpulNum,
ICS_CHAR *fname,
ICS_UINT flags,
ICS_DYN parent,
ICS_DYN *handlep)

cpuNum Target CPU number.

fname Local OS filename of the dynamic ELF module.
flags Various flag bits which affect behavior.
parent Dynamic object handle of parent module.

handlep Returns dynamic module handle.

ICS_SUCCESS Successfully loaded the dynamic module.

handlep Allocated dynamic module handle.

ICS_NAME_NOT_FOUND Filename not found.
ICS_INVALID_ARGUMENT An invalid argument or ELF file was supplied.
ICS_NOT_CONNECTED Target CPU is not connected.

ICS_ENOMEM Failed memory/resource allocation.
ICS_SYSTEM_ERROR A system error occurred.
ICS_SYSTEM_TIMEOUT A communications operation timed out.
Callable from task context only.

ICS_dyn_load_file() is used to load relocatable ELF dynamic modules files on
the calling CPU and relocate them so that they can be executed on the target CPU.
On successful completion, a dynamic module handle is returned to the caller using

the handlep argument.

The ICS dynamic module system is layered on top of the 'rl' library provided by the ST
Micro Toolset. Much more detail can be found in the relevant Toolset manuals.

cpuNum is the logical target CPU of where the dynamic module should be loaded.

fname should be a local OS filename from where the ELF dynamic module image
can be obtained.

Currently no £lags bits are defined and this parameter must be set to zero.

parent is the ICS_DYN handle of the parent module of the one being loaded. If no
parent exists, then it can be supplied as a zero handle. If a non-zero parent handle is
supplied then the new module will be linked against that module in the target CPU,
providing symbol inheritance from the parent module.

8182595 Rev C 159/216

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 162/218

Inter-core system (ICS) API Multicom 4

handlep should be a non-NULL pointer to an ICS_DYN sized handle, which is used
to return the allocated dynamic module handle.

160/216 8182595 Rev C I‘YI

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C

Multicom 4

CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 163/218

Inter-core system (ICS) API

ICS_dyn_load_image

Definition:

Arguments:

Returns:

Errors:

Context:

Description:

#include <ics.h>

Load a dynamic ELF module from a memory image

ICS_ERROR ICS_dyn_load_image (ICS_UINT cpulNum,
ICS_CHAR *image,
ICS_SIZE imageSize,
ICS_UINT flags,
ICS_DYN parent,
ICS_DYN *handlep)

cpulNum
image
imageSize
flags
parent

handlep

ICS_SUCCESS

handlep

ICS_INVALID_ARGUMENT
ICS_NOT_CONNECTED
ICS_ENOMEM
ICS_SYSTEM_ERROR

ICS_SYSTEM_TIMEOUT

Callable from task context only.

Target CPU number.

Base address of the dynamic ELF module.
Size of the dynamic ELF module image.
Various flag bits which affect behavior.
Handle of parent dynamic module.

Returns dynamic module handle.

Successfully loaded the dynamic module.

Allocated dynamic module handle on success.

An invalid argument or ELF file was supplied.
Target CPU is not connected.

Failed memory/resource allocation.

A system error occurred.

A communications operation timed out.

ICS_dyn_load_image () is used to take a relocatable ELF dynamic modules
image on the calling CPU and relocate it so that it can be executed on the target
CPU. On successful completion a dynamic module handle is returned to the caller in

the handlep argument.

The ICS dynamic module system is layered on top of the 'rl' library provided by the ST
Micro Toolsets. Much more detail can be found in the relevant Toolset manuals.

As a dynamic module is loaded into the target CPU, the ICS system will automatically
call a function named module_init () if one is present in the loaded module.

cpuNum is the logical target CPU number of where the dynamic module should be

loaded.

image should be a local memory address where the ELF dynamic module image can

be found.

imageSize should be size of the ELF dynamic module image in bytes.

8182595 Rev C 161/216

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 164/218

Inter-core system (ICS) API Multicom 4

Currently no flags bits are defined and this parameter must be set to zero.

parent is the ICS_DYN handle of the parent module of the one being loaded. If no
parent exists, then it can be supplied as a zero handle. If a non-zero parent handle is
supplied then the new module will be linked against that module in the target CPU,
providing symbol inheritance from the parent module. For further details on symbol
inheritance see the 'rl' toolkit manual.

handlep should be a non-NULL pointer to an ICS_DYN sized object, which is used to
return the allocated dynamic module handle.

J

162/216 8182595 Rev C

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 165/218

Multicom 4 Inter-core system (ICS) API
ICS_dyn_unload Unload a previously loaded dynamic ELF module
Definition: #include <ics.h>

ICS_ERROR ICS_dyn_unload (ICS_DYN handle)

Arguments:
handle Handle of the dynamic module to be unloaded.
Returns:
ICS_SUCCESS Successfully unloaded the dynamic module.
Errors:
ICS_HANDLE_INVALID An invalid handle was supplied.
ICS_NOT_CONNECTED Target CPU is not connected.
ICS_SYSTEM_ERROR A system error occurred.
ICS_SYSTEM_TIMEOUT A communications operation timed out.
Context: Callable from task context only.
Description: ICS_dyn_unload () unloads a dynamic ELF module which was previously loaded
using ICS_dyn_load_file() or ICS_dyn_load_image ().
It will unload the dynamic module in the original target CPU making use of the 'rl'
toolkit system.
As a dynamic module is unloaded from the target CPU, the ICS system will
automatically call a function named module_term () if one is present in the loaded
module.
handle should be a valid dynamic module handle.
ﬁ 8182595 Rev C 163/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 166/218

Inter-core system (ICS) API Multicom 4
ICS_msg_cancel Cancel an asynchronous port receive
Definition: #include <ics.h>

ICS_ERROR ICS_msg_cancel (ICS_MSG_EVENT event)
Arguments:
event Message event handle to be cancelled.

Returns:
ICS_SUCCESS Cancel completed successfully.
Errors:
ICS_NOT_INITIALISED ICS not initialized.
ICS_HANDLE_INVALID An invalid event handle was supplied.
ICS_SYSTEM_ERROR A system error occurred.
Context: Callable from task context only.

Description: ICS_msg_cancel () cancels an asynchronous receive request as posted with
ICS_msg_post (). On successful return the message event handle will have been
released and cannot be used again.

ICS_msg_cancel () must not be called on message events which are currently
being blocked on in a call to ICS_msg_wait ().

If the associated port is closed with TCS_port_free () whilst there are still
outstanding posted receives then they will all be automatically released. Calling
ICS_msg_cancel () on such handles will result in ICS_HANDLE_INVALID being
returned.

event should be a valid message event handle.

g

164/216 8182595 Rev C

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 167/218

Multicom 4 Inter-core system (ICS) API
ICS_MSG_DESC Port message descriptor
Definition: #include <ics.h>

typedef struct ics_msg_desc

{

ICS_OFFSET data;
ICS_SIZE size;
ICS_MEM_FLAGS mflags;
ICS_UINT srcCpu;
ICS_CHAR payload[ICS_MSG_INLINE_DATA] ;
} ICS_MSG_DESC;
Members:
data Address of the message data buffer.
size Size in bytes of the receive message.
mflags Memory attribute flags of the data buffer.
srcCpu CPU number of the source CPU.
payload Area for ICS_INLINE data.
Description: This is the message descriptor posted and completed by ICS_msg_recv () and
ICS_msg_post ().
On successful completion all the member fields will have been completed by the ICS
system.
data will be a valid address of the corresponding data buffer. In the case of
ICS_INLINE, ICS_CACHED and ICS_UNCACHED messages this will be a
corresponding virtual address pointer. For ICS_PHYSICAL messages it will be a
physical memory address.
size will be the size of the received message in bytes.
mflags will be set according to the message data buffer memory attributes. Valid
flags are ICS_INLINE, ICS_CACHED, ICS_UNCACHED and ICS_PHYSICAL.
srcCpu will be set to the ICS logical CPU number of the sending CPU.
payload will contain the inline data if ICS_INLINE is setin mflags.
Ay 8182595 Rev C 165/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 168/218

Inter-core system (ICS) API Multicom 4
ICS_msg_post Post an asynchronous receive on a port
Definition: #include <ics.h>

typedef struct ics_msg_desc

{

ICS_OFFSET data;

ICS_SIZE size;

ICS_MEM_FLAGS mflags;

ICS_UINT srcCpu;

ICS_CHAR payload[ICS_MSG_INLINE_DATA] ;

} ICS_MSG_DESC;

ICS_ERROR ICS_msg_post (ICS_PORT port,
ICS_MSG_DESC *rdesc,
ICS_MSG_EVENT *eventp)

Arguments:
port Port handle.
rdesc Receive descriptor pointer.
eventp Pointer to an ICS_MSG_EVENT handle.

Returns:

ICS_SUCCESS Successfully posted a receive.

eventp The associated message event handle on success.
Errors:

ICS_NOT_INITIALISED ICS not initialized.

ICS_INVALID_ARGUMENT An invalid argument was supplied.

ICS_HANDLE_INVALID An invalid port handle was supplied.

ICS_PORT_CLOSED Port has been closed.

ICS_ENOMEM Failed memory/resource allocation.

ICS_SYSTEM. ERROR A system error occurred.

Context: Callable from task context only.

Description: ICS_msg_post () posts an asynchronous (nonblocking) receive to the supplied
port handle to match new message arrivals. Messages are received strictly in the
order they were sent to the port and asynchronous receives are processed in order
too.

On successful completion the supplied rdesc descriptor will have been posted
against the requested port. This receive descriptor will be associated with the
returned handle in eventp. This handle can then be used in calls to
ICS_msg_test () and ICS_msg_wait () to test for or block for message arrival.
Until IcS_msg_wait () has been called successfully on the returned eventp
handle, the memory associated with the rdesc parameter must not be reused or
freed.

166/216 8182595 Rev C 1S7]

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 169/218

Multicom 4 Inter-core system (ICS) API

For asynchronous posted receives, new incoming messages will always be matched
to the posted receive descriptors in the order that the receives were issued. This also
holds true if a blocking TCS_msg_recv () is subsequently issued against the same
port.

If the port associated with the asynchronous receive is closed by ICS_port_free ()
then all outstanding posted receives will be signalled and completed with an
ICS_PORT_CLOSED error.

port should be a valid local port as created with ICS_port_alloc().
rdesc should be a pointer to a unique ICS_MSG_DESC sized region of memory.

eventp should be a pointer to an ICS_MSG_EVENT object.

KYI 8182595 Rev C 167/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C

Inter-core system (ICS) API

CONTROLLED DOCUMENT (Check latest revision)

DATE 28-FEB-2011 page: 170/218

Multicom 4

ICS_msg_recv

Definition: #include <ics.h>

Blocking call to receive a message on an ICS port

typedef struct ics_msg_desc

{
ICS_OFFSET
ICS_SIZE
ICS_MEM_FLAGS
ICS_UINT
ICS_CHAR

} ICS_MSG_DESC;

ICS_ERROR ICS_msg_recv

data;

size;

mflags;

srcCpu;
payload[ICS_MSG_INLINE_DATA] ;

(ICS_PORT port,

ICS_MSG_DESC *rdesc,
ICS_LONG timeout)

Arguments:
port

rdesc

timeout
Returns:

ICS_SUCCESS

rdesc

Errors:
ICS_NOT_INITIALISED
ICS_INVALID_ARGUMENT
ICS_HANDLE_INVALID
ICS_PORT_CLOSED
ICS_ENOMEM
ICS_SYSTEM. ERROR
ICS_SYSTEM_TIMEOUT

Context:

Port handle.
Receive descriptor pointer.

Time in milliseconds to block waiting for a message.

Successfully received a message.

Updated message descriptor on success.

ICS not initialized.

An invalid argument was supplied.
An invalid port handle was supplied.
Port has been closed.

Failed memory/resource allocation.
A system error occurred.

Receive timed out.

Description:

168/216

Callable from task context only

ICS_msg_recv () blocks on the supplied port handle awaiting a new message
arrival. Messages are received in strictly the order they were sent to the port.

port should be a valid local open port as created with ICS_port_alloc().
rdesc should be a pointer to a unique ICS_MSG_DESC sized region of memory.

timeout is the amount of time in milliseconds before the blocking wait should abort
and return ICS_SYSTEM_TIMEOUT.

On successful completion the supplied rdesc descriptor will have been updated with
all the new message information and any inline data. The rdesc mflags member
indicates the data attributes. For ICS_INLINE messages the data will be available in
the payload buffer and the rdesc data member will reflect this fact. For

8182595 Rev C I‘YI

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 171/218

Multicom 4 Inter-core system (ICS) API

ICS_CACHED and ICS_UNCACHED messages the corresponding virtual address
mapping (that is, cached or uncached) will be supplied in the data member. For
ICS_PHYSICAL messages the physical address of the sender's original data buffer

will presented in the rdesc data member.

KYI 8182595 Rev C 169/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C

Inter-core system

CONTROLLED DOCUMENT (Check latest revision)

(ICS) API

DATE 28-FEB-2011

Multicom 4

ICS_msg_send

Definition:

Arguments:

Returns:

Errors:

Context:

Description:

170/216

#include <ics.h>

ICS_ERROR ICS_msg_send

Send a message buffer to a port

(ICS_PORT port,

ICS_VOID *buffer,
ICS_MEM_FLAGS mflags,
ICS_SIZE size,
ICS_UINT flags)

port
buffer
mflags
size

flags

ICS_SUCCESS

ICS_NOT_INITIALISED
ICS_INVALID_ARGUMENT
ICS_HANDLE_TINVALID
ICS_PORT_CLOSED
ICS_NOT_CONNECTED
ICS_FULL

ICS_ENOMEM

ICS_SYSTEM_ERROR

Port handle.

Source data buffer.

Destination data buffer memory attributes.
Source data buffer size.

ICS message and send flag bits, see Table 26.

Successfully sent message.

ICS not initialized.

An invalid argument was supplied.
An invalid port handle was supplied.
Port has been closed.

Target CPU is not connected.

An inter-CPU FIFO was full.

Failed memory/resource allocation.

A system error occurred.

Callable from task context only.

ICS_msg_send () sends a message to the target port handle. This port handle can
either be a local port as created with ICS_port_alloc () or a remote port as
discovered with ICS_port_lookup ().

Messages are always delivered to the target port in the same order they were sent.
On successful return, it is guaranteed that the message will be delivered to the target
port.

The message data should be presented as a virtual address in the buf fer argument
with its size in bytes being specified by the size parameter.

The mflags parameter allows the caller to control how the data is transferred and
how it is presented to the target receiver. Settingmflags to ICS_INLINE causes the
data to be copied on send into a system buffer area and subsequently copied to the
target receiver as part of the ICS_MSG_DESC descriptor. Such inline message data
cannot exceed ICS_MSG_INLINE_DATA bytes in size.

573

8182595 Rev C

page: 172/218

©Copyright STMicroelectronics

N/A

Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C

Multicom 4

CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 173/218

Inter-core system (ICS) API

Note:

Setting the mf1lags parameters to either ICS_CACHED or ICS_UNCACHED will cause
the data to be transferred using zero copy techniques; where the buffer address must
have come from a memory region which has been previously registered with
ICS_region_add(). In this case the target receiver will be presented with the
appropriate virtual address mapping of that physical memory buffer (that is, cached or
uncached).

Setting the flags parameters to 1Ccs_PHYSICAL will cause the physical address of the
supplied virtual data buffer to be presented at the target port. In this case the data
buffer does not need be have been pre-registered with ICS_region_add().

Using the zero-copy message passing technique effectively transfers ownership of
the physical data region to the target CPU. ICS does not take any further control in
this respect and therefore it is the programmer's responsibility to ensure the memory
is correctly managed and released on the sender.

ICS_msg_send() is an asynchronous, nonblocking operation, and on return it
cannot be assumed that the target CPU has received the message. This means that,
except in the case of ICS_INLINE messages, the supplied data buffer cannot be
reused until some form of acknowledgement has been received from the target CPU.

The valid £1ags bits are defined in Table 26

Table 26. ICS message send flag

Channel flag Description

ICS_MSG_CONNECT Make a connection to target CPU if necessary.

Setting the flag bit value TCS_MSG_CONNECT causes the ICS system to attempt to
make a connection to the target CPU if one if not already in place. If the CPU has
failed, then this operation blocks and the call eventually returns an error after a
predefined timeout period.

It is advised that the TCS_MSG_CONNECT flag should be used whenever a new
connection is being potentially established with the target CPU, especially when the
ICS_INIT_CONNECT_ALL flag was not passed to ICS_cpu_init () or
ics_cpu_init (). However, once communication has begun with the target CPU,
then ICS_MSG_CONNECT should not be used, otherwise large timeouts will occur in
the case of a CPU failure.

'S7i 8182595 Rev C 171/216
©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 174/218

Inter-core system (ICS) API Multicom 4

ICS_msg_test Test an asynchronous message receive event for completion

Definition: #include <ics.h>

ICS_ERROR ICS_msg_test (ICS_MSG_EVENT event,
ICS_BOOL *readyp)

Arguments:
event Message event handle.
readyp Pointer to a boolean for returning event status.

Returns:

ICS_SUCCESS Call completed successfully.
readyp Boolean of event completion state.

Errors:

ICS_NOT_INITIALISED ICS not initialized.
ICS_INVALID_ARGUMENT An invalid argument was supplied.
ICS_HANDLE_INVALID An invalid event handle was supplied.
ICS_PORT_CLOSED Port has been closed.
ICS_SYSTEM_ERROR A system error occurred.
ICS_SYSTEM_TIMEOUT Wait timed out.

Context: Callable from task context only.

Description: ICS_msg_test () polls the state of a message event and sets the readyp
parameter based on whether the event is ready or not. If the event is indicated as
being ready, then a subsequent call to TCS_msg_wait () will always complete
without blocking.

Note: ICS_msg_test () does not free the message event handle.
event should be a valid message event handle as returned by ICS_msg_post ().
readyp should be a pointer to an TCS_B0OOL object. It will be set to either ICS_TRUE
or ICS_FALSE on completion.

See also: ICS_msg_wait

172/216 8182595 Rev C ﬁ

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 175/218

Multicom 4 Inter-core system (ICS) API

ICS_msg_wait Block an asynchronous message receive event for completion

Definition: #include <ics.h>

ICS_ERROR ICS_msg_wait (ICS_MSG_EVENT event,
ICS_LONG timeout)

Arguments:
event Message event handle.
timeout Time in milliseconds to block waiting for the event.

Returns:

ICS_SUCCESS Call completed successfully.
readyp Boolean of event completion state.

Errors:

ICS_NOT_INITIALISED ICS not initialized.
ICS_INVALID_ARGUMENT An invalid argument was supplied.
ICS_HANDLE_INVALID An invalid event handle was supplied.
ICS_PORT_CLOSED Port has been closed.
ICS_SYSTEM_ERROR A system error occurred.
ICS_SYSTEM_TIMEOUT Wait timed out.

Context: Callable from task context only.

Description: ICS_msg_wait () blocks on the supplied message event handle until the
associated event completes or the timeout period expires. In all cases, the message
event is released on completion of this call.
event should be a valid message event handle as returned by ICS_msg_post ().
timeout is the amount of time in milliseconds to block waiting for a message event
to complete.

See also: ICS_msg_test

ﬁ 8182595 Rev C 173/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C

Inter-core system

CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

(ICS) API Multicom 4

ICS_nsrv_add Add a named object with the name server

Definition:

Arguments:

Returns:

Errors:

Context:

Description:

174/216

#include <ics.h>

ICS_ERROR ICS_nsrv_add (const ICS_CHAR *name,
ICS_VOID *data,
ICS_SIZE size,
ICS_UINT flags,
ICS_NSRV_HANDLE handlep)

name Object name to be added.

data Object data to be associated with the name.
size Size of object data.

flags Various flag bits which affect behavior.

handlep Pointer to an ICS_NSRV_HANDLE handle.

ICS_SUCCESS Successfully registered named object.

ICS_NOT_INITIALISED ICS not initialized.

ICS_NAME_IN_USE name is aready in use.
ICS_INVALID_ARGUMENT An invalid argument was supplied.
ICS_ENOMEM Failed memory/resource allocation.
ICS_SYSTEM_ERROR A system error occurred.
ICS_SYSTEM_TIMEOUT Failed to communicate with the name server.
Callable from task context only.

ICS_nsrv_add () adds the supplied object data to the global name server
associating it with the supplied name string. Duplicate names are allowed and in this
case the nameserver returns matching object lookups, in a round-robin order.

name should be an ASCII "\ 0' terminated string, of length not exceeding
ICS_NSRV_MAX_NAME characters (not including the "\ 0').

data should be a pointer to the object data to be associated with the name string in
the name server.

size should be the size in bytes of the object data. It must not exceed
ICS_NSRV_MAX_DATA in size.

Currently no £lags bits are defined and this parameter must be set to zero.

handlep should be a hon-NULL pointer to an ICS_NSRV_HANDLE sSized object, in
which the allocated nameserver handle is returned.

J

8182595 Rev C

page: 176/218

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C

Multicom 4

CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 177/218

Inter-core system (ICS) API

ICS_nsrv_lookup Lookup a named object in the name server

Definition:

Arguments:

Returns:

Errors:

Context:

Description:

#include <ics.h>

ICS_ERROR ICS_nsrv_lookup (const ICS_CHAR *name,
ICS_UINT flags,
ICS_LONG timeout,
ICS_VOID *data,
ICS_SIZE *sizep)

name Name string (maximum length
ICS_NSRV_MAX NAME).

flags Various flag bits which affect behavior.
timeout Time in milliseconds to block waiting for a response.
data Buffer for discovered object data.

sizep Used to return the discovered object data size.

ICS_SUCCESS Successfully discovered an object in the name
server.

data Buffer where object data is copied on success.

sizep Discovered object data size.

ICS_NOT_INITIALISED ICS not initialized.

ICS_NAME_NOT_FOUND name was not found in the name server.
ICS_INVALID_ARGUMENT An invalid argument was supplied.
ICS_ENOMEM Failed memory/resource allocation.
ICS_SYSTEM_ERROR A system error occurred.
ICS_SYSTEM_TIMEOUT Failed to communicate with the name server.
Callable from task context only

ICS_nsrv_lookup () attempts to discover the named object in the global name
server. It supports both blocking and non-blocking modes of operation. In the non-
blocking mode, if the supplied name is not present in the name server, then
ICS_NAME_NOT_FOUND will be returned. In the blocking mode, the call will block for a
specified amount of time waiting for the name to be registered. Once the timeout
period has expired and no response has arrived from the name server, then
ICS_sysSTEM_TIMEOUT will be returned. Duplicate object names are allowed in the
nameserver, in which case matching lookups are supplied the referenced objects, in
a round-robin order.

name should be an ASCII '\ 0' terminated string of length not exceeding
ICS_NSRV_MAX_NAME characters (not including the "\ 0').

flags can be setto ICS_BLOCK to cause the function to block until the named object
is registered in the name server.

8182595 Rev C 175/216

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 178/218

Inter-core system (ICS) API Multicom 4

timeout is the number of milliseconds an ICS_BLOCK call should wait for a
response. Predefined values of timeout can be used;

— ICS_TIMEOUT_ IMMEDIATE (return immediately)
— ICS_TIMEOUT_INFINITE (never return)

data should be a non-NULL pointer to an area of memory of at least
ICS_NSRV_MAX_DATA bytes in size.

sizep should be a non-NULL pointer to an ICS_SIZE sized object in which the size
of the discovered object data will be returned.

176/216 8182595 Rev C I‘YI

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 179/218

Multicom 4 Inter-core system (ICS) API
ICS_nsrv_remove Remove an object from the name server
Definition: #include <ics.h>

ICS_ERROR ICS_nsrv_remove (ICS_NSRV_HANDLE handle,
ICS_UINT flags);

Arguments:
handle Handle of object to be de-registered.
flags Various flag bits which affect behavior.
Returns:
ICS_SUCCESS Successfully de-registered the named object.
Errors:
ICS_NOT_INITIALISED ICS not initialized.
ICS_HANDLE_INVALID An invalid object handle was supplied.
ICS_NAME_NOT_FOUND The object is not present in the name server.
ICS_INVALID_ARGUMENT An invalid argument was supplied.
ICS_ENOMEM Failed memory/resource allocation.
ICS_SYSTEM_ERROR A system error occurred.
ICS_SYSTEM_TIMEOUT Failed to communicate with the name server.
Context: Callable from task context only
Description: ICS_nsrv_remove () removes a previously registered object from the global ICS
name server. If the supplied object is not present in the name server then
ICS_NAME_NOT_FOUND is returned.
handle should be a valid name server object handle as returned by
ICS_nsrv_add().
Currently no £lags bits are defined and this parameter must be set to zero.
ﬁ 8182595 Rev C 177/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 180/218

Inter-core system (ICS) API Multicom 4
ICS_port_alloc Allocate an ICS port
Definition: #include <ics.h>

typedef ICS_ERROR (*ICS_PORT_CALLBACK) (ICS_PORT port,
ICS_VOID *param,
ICS_MSG_DESC *rdesc)

ICS_ERROR ICS_port_alloc (const ICS_CHAR *portName,
ICS_PORT_CALLBACK callback,
ICS_VOID *param,
ICS_UINT ndesc,
ICS_UINT flags,
ICS_PORT *portp)

Arguments:
portName Port name to be allocated or NULL.
callback Callback function to be associated with this port.
param Parameter to be supplied to the callback function.
ndesc Depth of message queue for this port
flags Various flag bits which affect behavior.
portp Port handle pointer used to return allocated handle.
Returns:
ICS_SUCCESS Successfully allocated port.
portp Allocated port handle.
Errors:
ICS_NOT_INITIALISED ICS not initialized.
ICS_INVALID_ARGUMENT An invalid argument was supplied.
ICS_ENOMEM Failed memory/resource allocation.
ICS_SYSTEM_ERROR A system error occurred.
ICS_SYSTEM_TIMEOUT Failed to communicate with the name server.
Context: Callable from task context only
Description: ICS_port_alloc () allocates an ICS port on the local CPU. Ports can either be
anonymous or named. All named ports are registered with the global name server
from where they can be discovered and communicated with by all participating CPUs.
If the supplied portName is already present in the name server, then multiple port
handles with the same name will be registered and returned in a round-robin order on
lookup.
portName is an optional ASCIl "\ 0" terminated string of length not exceeding
ICS_PORT_MAX_NAME characters (not including the '\ 0").
portName can be set to NULL to indicate that this is a local anonymous port whose
name does not need to be registered with the global name server.
178/216 8182595 Rev C 1S7]

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 181/218

Multicom 4 Inter-core system (ICS) API

callback is a pointer to function of type ICS_PORT_ CALLBACK which will be
invoked each time a new message arrives at the port. It will be invoked in interrupt
context supplying the associated port handle, param and an ICS_MSG_DESC
message descriptor pointer. If callbacks are not required then these parameters can
be set to NULL.

ndesc determines the depth of the message queue associated with this port. It must
be a power of 2 in size. Messages are stored on this queue in FIFO order until
received by calling ICS_msg_recv () or ICS_msg_post (). A value of zero for this
parameter is also allowed, in which case messages will be held in the inter-CPU
FIFOs until a corresponding message receive is posted.

Note: Setting the port message queue depth to zero should be used with caution as it could
block all other messages in the inter-CPU FIFO.

Currently no £1ags bits are defined and this parameter must be set to zero.

portp should be a pointer to an ICS_PORT object in which the allocated port handle
will be returned on successful completion.

KYI 8182595 Rev C 179/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C

CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

Inter-core system (ICS) API Multicom 4
ICS PORT _CALLBACK Port callback function
Definition: #include <ics.h>

Arguments:

Returns:

Errors:

Context:

Description:

180/216

typedef ICS_ERROR (*ICS_PORT_CALLBACK) (ICS_PORT port,
ICS_VOID *param,
ICS_MSG_DESC *rdesc)

port The associated port handle.

param param argument as supplied to the port create
function.

rdesc Receive descriptor pointer.

ICS_SUCCESS Successfully processed message.

ICS_FULL Failed to consume message.
Called from interrupt context only

This is the port callback function that is invoked for each message that arrives at the
port. It will be called using the same param argument as supplied during
ICS_port_alloc().

The rdesc pointer will refer to a completed I1CcS_MSG_DESC descriptor. Normally the
callback function should process this incoming rdesc and return ICS_SUCCESS which
will cause the message to be consumed. If however, it cannot be consumed at this
point in time, then I1CS_FULL should be returned which will cause the message to be
held on the per port message queues. It can then be later retrieved by calling
ICS_msg_recv() Or ICS_msg_post ().

In order to preserve message ordering, once the callback function has returned
ICS_FULL, no further callbacks will be generated on that port. Callbacks will only be
enabled once the associated port message queue has been emptied.

J

8182595 Rev C

page: 182/218

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 183/218

Multicom 4 Inter-core system (ICS) API
ICS_port_cpu Return logical CPU number associated with port
Definition: #include <ics.h>

ICS_EXPORT ICS_ERROR ICS_port_cpu (ICS_PORT port,
ICS_UNIT *cpuNump)

Arguments:
port The associated port handle.
cpuNump Return logical CPU number.
Returns:
ICS_SUCCESS Successfully determined port logical CPU number.
Errors:
ICS_NOT_INITIALISED ICS not initialized.
ICS_INVALID_ARGUMENT An invalid argument was supplied.
ICS_HANDLE_INVALID An invalid port handle was supplied.
Context: Called from task and interrupt context
Description: ICS_port_cpu () can be used to return the logical CPU number associated with the
supplied port handle. If the port handle is valid, then TCS_SUCCESS is returned and
the associated logical CPU number is returned.
port should be a valid port handle.
cpuNump should be a pointer to an ICS_UINT sized object in which the associated
CPU number is returned on success.
ﬁ 8182595 Rev C 181/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C

Inter-core system

CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 184/218

(ICS) API

Multicom 4

ICS_port_free

Free and close an ICS port

Definition: #include <ics.h>

ICS_ERROR ICS_port_free (ICS_PORT port,
ICS_UINT flags)

Arguments:
port Port handle.
flags Various flag bits which affect behavior.

Returns:
ICS_SUCCESS Successfully freed port.

Errors:
ICS_NOT_INITIALISED ICS not initialized.
ICS_PORT_CLOSED Port is already closed.
ICS_HANDLE_INVALID An invalid port handle was supplied.
ICS_SYSTEM_ERROR A system error occurred.
ICS_SYSTEM_TIMEOUT Failed to communicate with the name server.

Context: Callable from task context only.

Description: ICS_port_free () will free off and close a port previously created with
ICS_port_alloc (). Closing a port will cause any tasks blocked on the port to be
awoken and returned with the TCS_PORT_CLOSED error status. For named ports
they will also be de-registered from the global name server.
port should be a valid port handle
Currently no £lags bits are defined and this parameter must be set to zero.

182/216 8182595 Rev C ﬁ

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011
Multicom 4 Inter-core system (ICS) API
ICS_port_lookup Lookup an ICS port handle
Definition: #include <ics.h>

ICS_ERROR ICS_port_lookup (const ICS_CHAR *portName,
ICS_UINT flags,
ICS_LONG timeout,
ICS_PORT *portp) ;

page: 185/218

Arguments:
portName Port name string.
flags Various flag bits which affect behavior.
timeout Time in milliseconds to block waiting for a response
portp Port handle pointer used to return discovered handle.

Returns:
ICS_SUCCESS Successfully discovered port handle.
portp Discovered port handle.

Errors:
ICS_NOT_INITIALISED ICS not initialized.
ICS_NAME_NOT_FOUND Port name was not found in the name server.
ICS_INVALID_ARGUMENT An invalid argument was supplied.
ICS_ENOMEM Failed memory/resource allocation.
ICS_SYSTEM_ERROR A system error occurred.
ICS_SYSTEM_TIMEOUT Failed to communicate with the name server.

Context: Callable from task context only.

Description: ICS_port_lookup () attempts to discover the port named portName in the global
name server. If found then ICS_SUCCESS is returned and the associated port handle
is returned. If multiple port handles with the same name are present in the global
name server then the handles are returned in a round-robin order.
portName should be an ASCII NUL (\0) terminated string of length not exceeding
ICS_PORT_MAX_NAME characters (not including the NUL).
flags can be setto ICS BLOCK to cause the function to block until the named port
is registered in the name server. In this case, the function will block for the number of
milliseconds specified in the t imeout parameter. Predefined values of timeout can
be used:

— ICS_TIMEOUT_IMMEDIATE (return immediately)

— ICS_TIMEOUT_INFINITE (never return)

portp should be a pointer to an TCS_PORT object in which the discovered port
handle will be returned on successful completion.

Ay 8182595 Rev C 183/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011
Inter-core system (ICS) API Multicom 4
ICS_region_add Add a region to the local and remote CPU region tables
Definition: #include <ics.h>

ICS_ERROR ICS_region_add (ICS_VOID *map,
ICS_OFFSET paddr,
ICS_SIZE size,
ICS_MEM_FLAGS mflags,
ICS_ULONG cpuMask,
ICS_REGION *regionp)
Arguments:
map Virtual address of region base.
paddr Physical address of region base.
size Size of the region in bytes.
mflags Memory region attributes.
cpuMask Bitmask of logical CPUs.
regionp Region handle pointer.
Returns:
ICS_SUCCESS Successfully added region.
regionp Region handle allocated.
Errors:
ICS_NOT_INITIALISED ICS not initialized.
ICS_INVALID_ARGUMENT An invalid argument was supplied.
ICS_ENOMEM Failed memory/resource allocation.
ICS_SYSTEM_ERROR A system error occurred.
ICS_SYSTEM TIMEOUT Failed to communicate with the name server.
Context: Callable from task context only
Description: ICS_region_add () maps a memory region in both the local CPU and all the
remote CPUs as indicated by cpuMask. These regions are used to enable zero-copy
message passing to be achieved, by allowing common regions of physical memory to
be mapped by each CPU.
map is the optional virtual address of the base of the memory region being registered.
If it is set to NULL, then the appropriate mapping will be created on the local CPU.
The supplied mflags and paddr arguments must be consistent with those of the
map Virtual address.
paddr should be the physical address of the memory region being added. It should
be aligned to an ICS_PAGE_SIZE boundary.
size is the size in bytes of the whole memory region. It should be a whole multiple of
ICS_PAGE_SIZE.
mflags specifies the memory attributes of the region being added. Valid values are
ICS_CACHED and ICS_UNCACHED. Memory mappings with the corresponding
184/216 8182595 Rev C 1S7]

page: 186/218

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C

Multicom 4

CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 187/218

Inter-core system (ICS) API

Note:

memory attributes will be created on the remote CPUs and also on the local CPU if a
NULL map parameter was supplied.

cpuMask should be a logical CPU bitmask of each CPU which is required to map the
new region. Passing in ICS_CPU_ALL for this argument will cause it to be added to
all CPUs present.

The calling CPU is assumed to be present in this CPU bitmask and not setting the
corresponding bit will have no effect.

regionp is used to return a region handle to the caller. This handle should be used
in future ICS_region_remove () calls.

'S7i 8182595 Rev C 185/216
©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C

Inter-core system

CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

(ICS) API Multicom 4

ICS_region_phys2virt Translate a physical memory region into a local

Definition:

Arguments:

Returns:

Errors:

Context:

Description:

186/216

virtual address

#include <ics.h>

ICS_ERROR ICS_region_phys2virt (ICS_OFFSET paddr,
ICS_SIZE size,
ICS_MEM_FLAGS mflags,
ICS_VOID **addressp)

paddrp Physical address to be translated.
size Size of memory region.
mflags Memory attribute flags requested.

addressp Returned virtual address pointer.

ICS_SUCCESS Successfully translated address.

addressp Virtual address translation.

ICS_NOT_INITIALISED ICS not initialized.
ICS_INVALID_ARGUMENT An invalid argument was supplied.
ICS_HANDLE_INVALID No translation found.

Callable from task and interrupt context.

ICS_region_phys2virt () translates a physical address into a local CPU virtual
address. It does this by making use of the region tables as created with
ICS_region_add().

If a matching region is found, then the corresponding virtual address mapping will be
returned in addressp.

For a matching region to be found, the local region table must contain a region which
covers the whole of the supplied memory region and that also has the same memory
attributes as specified in the mf1ags argument. If no matching region is found, then
ICS_INVALID_ARGUMENT is returned.

paddr should be a valid physical address.
size should be the size of the region being translated.

mflags should be a valid memory attribute flag such as ICS_CACHED,
ICS_UNCACHED Or ICS_PHYSICAL.

addressp should be a valid pointer to an ICS_VOID pointer.

J

8182595 Rev C

page: 188/218

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 189/218

Multicom 4 Inter-core system (ICS) API

ICS_region_remove Remove a region from the local and remote CPU
region tables

Definition: #include <ics.h>

ICS_ERROR ICS_region_remove (ICS_REGION region,
ICS_UINT flags)

Arguments:
region Region handle.
flags Various flag bits which affect behavior.

Returns:

ICS_SUCCESS Successfully removed region.

Errors:

ICS_NOT_INITIALISED ICS not initialized.
ICS_INVALID_ARGUMENT An invalid argument was supplied.
ICS_HANDLE_INVALID An invalid region handle was supplied.
ICS_ENOMEM Failed memory/resource allocation.
ICS_SYSTEM_ERROR A system error occurred.
ICS_SYSTEM_TIMEOUT Failed to communicate with the name server.

Context: Callable from task context only.

Description: ICS_region_remove () removes and un-maps a memory region on both the local
CPU and all the remote CPUs as specified in the original ICS_region_add () call.
region should be a valid region handle as returned by ICS_region_add().

No flags bits are currently defined so this parameter must be set to zero.
ﬁ 8182595 Rev C 187/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 190/218

Inter-core system (ICS) API Multicom 4

ICS_region_virt2phys Translate a local virtual address into a physical one
Definition: #include <ics.h>
ICS_ERROR ICS_region_virt2phys (ICS_VOID *address,

ICS_OFFSET *paddrp,
ICS_MEM_FLAGS *mflagsp)

Arguments:
address Virtual memory address.
paddrp Physical address pointer to be returned.
mflagsp Memory attribute flags to be returned.

Returns:

ICS_SUCCESS Successfully translated address.
paddrp Physical address translation.
mflagsp Memory attribute flags of translated address.

Errors:

ICS_NOT_INITIALISED ICS not initialized.
ICS_INVALID_ARGUMENT An invalid argument was supplied.
ICS_HANDLE_INVALID No translation found.
ICS_SYSTEM_ERROR A system error occurred.

Context: Callable from task and interrupt context.

Description: ICS_region_virt2phys () translates a local CPU virtual address into a physical
one. It does this by making use of the region tables as created with
ICS_region_add().
If a matching region is found, then the corresponding physical address and memory
attributes will be written to paddrp and mflagsp respectively.
If no matching region is found, then the call will fall back to the OS specific virtual to
physical mapping system, and in this case mflagsp will be setto ICS_PHYSICAL.
address should be a local CPU virtual address.
paddrp should be a valid pointer to an ICS_OFFSET object.
mflagsp should be a valid pointer to an ICS_MEM_FLAGS object.

188/216 8182595 Rev C ﬁ

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 191/218
Multicom 4 Inter-core system (ICS) API
ICS_watchdog_add Install a CPU watchdog handler
Definition: #include <ics.h>

Arguments:

Returns:

Errors:

Context:

Description:

typedef void (*ICS_WATCHDOG_CALLBACK) (ICS_WATCHDOG handle,
ICS_VOID *param,
ICS_UINT cpuNum)

ICS_ERROR ICS_watchdog_add (ICS_WATCHDOG_CALLBACK callback,
ICS_VOID *param,
ICS_ULONG cpuMask,
ICS_UINT flags,
ICS_WATCHDOG *handlep)

callback Callback function for this watchdog.

param Parameter to be supplied to the callback function.
cpuMask Bitmask of all logical CPUs to be monitored.
flags Various flag bits which affect behavior.

handlep Handle pointer used to return allocated handle.

ICS_SUCCESS Successfully installed the watchdog.

handlep Contains allocated watchdog handle.

ICS_NOT_INITIALISED ICS not initialized.
ICS_INVALID_ARGUMENT An invalid argument was supplied.
ICS_ENOMEM Failed memory/resource allocation.
ICS_SYSTEM_ERROR A system error occurred.

Callable from task context only.

ICS_watchdog_add () installs a new CPU watchdog callback. The CPU watchdog
system will continuously monitor the CPUs as indicated by the cpuMask bitmask. If
any one of these CPUs crashes or is reset then the callback function will be called.
Multiple watchdog callbacks can be installed, and it doesn’t matter if the set of CPUs
they are monitoring overlaps. When a CPU failure occurs, all watchdog callbacks
monitoring the failed CPU will be called.

Once the callback has been triggered for a particular CPU, it will not trigger again until
ICS_watchdog_reprime () has been called for that particular CPU. Using this
technique means that if a CPU crashes and is rebooted, multiple watchdog callbacks
are not generated. However, the callback handler may still be called if other CPUs in
the monitored cpuMask bitmask fail.

callback must be a non-NULL ICS_WATCHDOG_CALLBACK function pointer.

param is an optional parameter pointer to be supplied to the callback function. It may
be NULL.

8182595 Rev C 189/216

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 192/218

Inter-core system (ICS) API Multicom 4

cpuMask is a bitmask of each logical CPU to be monitored by this watchdog callback.
Currently no flag bits are defined and this parameter must be set to zero.

handlep should be a valid pointer to an ICS_WATCHDOG object.

190/216 8182595 Rev C I‘YI

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 193/218
Multicom 4 Inter-core system (ICS) API
ICS_WATCHDOG_CALLBACK Watchdog callback function
Definition: #include <ics.h>

typedef void (*ICS_WATCHDOG_CALLBACK) (ICS_WATCHDOG handle,
ICS_VOID *param,
ICS_UINT cpulNum) ;

Arguments:
handle Watchdog handle associated with this callback.
param param argument as supplied with the install function.
cpulNum Logical CPU number of failed CPU.

Returns: None

Errors: None

Context: Called from task context only.

Description: This is the watchdog callback function that is invoked for each watchdog trigger that
occurs for the monitored CPUs. It will be called using the same param argument as
supplied during ICS_watchdog_add ().

It is also supplied with the allocated watchdog handle, and the failed cpuNum.
Note: As this callback is called from task context, it is allowed to call any of the ICS task
context functions.

Ay 8182595 Rev C 191/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 194/218

Inter-core system (ICS) API Multicom 4

ICS_watchdog_remove Remove a previously installed watchdog callback.

Definition: #include <ics.h>

ICS_ERROR ICS_watchdog_remove (ICS_WATCHDOG handle)

Arguments:
handle Handle of watchdog to be removed.

Returns:

ICS_SUCCESS Successfully removed the watchdog callback.

Errors:

ICS_HANDLE_INVALID An invalid handle was supplied.
ICS_SYSTEM_ERROR A system error occurred.

Context: Callable from task context only.

Description: ICS_watchdog_remove () removes a previously installed watchdog callback
handler. All further watchdog triggers of the monitored CPUs will be ignored.
handle should be a valid watchdog handle as allocated by ICS_watchdog_add ().

192/216 8182595 Rev C 1S7

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 195/218

Multicom 4 Inter-core system (ICS) API
ICS_watchdog_reprime Reprime a triggered watchdog callback
Definition: #include <ics.h>

ICS_ERROR ICS_watchdog_reprime (ICS_WATCHDOG handle,
ICS_UINT cpulNum)

Arguments:
handle Handle of watchdog to be re-primed.
cpuNum Logical CPU number of the CPU to monitor.

Returns:

ICS_SUCCESS Successfully re-primed the watchdog.

Errors:

ICS_INVALID_ARGUMENT An invalid argument was supplied.
ICS_HANDLE_INVALID An invalid handle was supplied.
ICS_SYSTEM_ERROR A system error occurred.

Context: Callable from task context only.

Description: ICS_watchdog_reprime () reprimes a watchdog handler that has previously
triggered. Once a watchdog for a particular CPU has been triggered, the callback
handler for that CPU will not be issued again until it has been reprimed by calling this
function.
handle should be a valid watchdog handle as allocated by T1CS_watchdog_add().
cpuNum should be the logical number of the CPU for which watchdog monitoring is to
be resumed.

ﬁ 8182595 Rev C 193/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 196/218

Inter-core system (ICS) API Multicom 4

6.3 Macro definitions

This section provides detailed descriptions of the ICS macros.

These macros can be used by the programmer to determine at compile time which version
of the ICS system is being used.

ICS_VERSION C language macro describing the ICS version

Definition: #include <ics.h>

#define ICS_VERSION (MAJOR, MINOR, PATCH)

Description: ICS_VERSION () is a macro that takes a major, minor and patch level as arguments
and generates a version code that can be compared against ICS_VERSION_CODE.

For example:

#if (ICS_VERSION CODE >= ICS_VERSION(1, 1, 0))
/* Call an API added in V1.1.0 */

#endif
ICS_VERSION_CODE C language macro describing the ICS version
Definition: #include <ics.h>

#define ICS_VERSION_CODE

Description: ICS_VERSION_CODE is the current ICS version code.

J

194/216 8182595 Rev C

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595

REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

Multicom 4 ICS board support package

Appendix A ICS board support package

The ICS BSP is used to configure SoC specific information such as Mailbox addresses and
reset registers in order for ICS to function. It also contains the CPU mapping table that is
used to map CPU names onto their logical CPU numbers.

Currently ICS is supplied with BSPs for a limited set of SoCs. However, it is fairly simple to
create a BSP for other SoCs. The BSP code can be found in source/src/bsp.

Taking the STi7200 as an example, we have:

stx7200/cores.c
stx7200/st40/mbox.c
stx7200/st40/name.c
stx7200/st40/reset.c
stx7200/st40/sti7200reg.h

stx7200/st231/audiol/mbox.c
stx7200/st231/audiol/name.c

stx7200/st231/audiol/mbox.c
stx7200/st231/audiol/name.c

stx7200/st231/videol/mbox.c
stx7200/st231/videol/name.c

stx7200/st231/videol/mbox.c
stx7200/st231/videol/name.c

The format and content of these BSP files is straight forward and the supplied BSPs can be
used as a template for creating new ones. The SoC specific header file sti7200reg.h can
be copied directly from the ST40 Micro Toolset, example directory.

In order for the OS21 BSP to be built by Multicom then the new SoC and core names must
be added to the relevant makefiles in the BSP directory, for example:

makebspst40.inc
makebspst231.inc

For the Linux kernel module build, the new BSP files need to be added to:
source/src/ics/Makefile

The Multicom 4 library can also be built using the external BSP source directory specified by
the BSP_SRCDIR make environment variable. This directory should have exactly the same
directory hierarchy and file locations as the one in the Multicom 4 source tree. The included
files makebspst40.inc and makebspst231.inc can then be modified to specify the
new SoC BSPs.

The BSP_INCDIR environment variable can also be used to supply an external include
directory, during compilation of the external BSP.

Under the Linux kernel the original Multicom 4 source/src/ics/Makefile directory still
needs to be modified to specify the new SoC. All the BSP files can be located in the external
BSP directory.

page: 197/218

Note: The BSP_SRCDIR and BSP_INCDIR paths supplied during the building of the ICS Linux
kernel module must be relative to the Multicom 4 source tree source/src/ics directory.
KYI 8182595 Rev C 195/216
©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 198/218

ICS board support package Multicom 4
A1 BSP data structures
This section describes each of the BSP data structures for CPU, mailbox, reset and boot
addresses.
Note: The data structures for the reset and boot addresses are defined for each CPU. It is

important therefore that the order of the entries defined for the table of CPUs (described in
Section A.1.1) are synchronized with the order of entries for the reset and boot address
structures (defined in reset .c) and listed in Section A.1.3.

A11 CPU table

This data structure defines an entry in the CPU name table. The CPU table is used to map
CPU core names onto their logical CPU numbers.

struct bsp_cpu_info
{
char *name;
char *type;
int num;
unsigned int flags;
Y

Table 27. CPU name table structure

Structure member name Description
name CPU core name, for example, “estb” or “audio”
type CPU architecture, for example, “st40 or “st231”
num Logical CPU number for this core (-ve to disable)
flags Various flag bits

Note: The order of the CPU definitions in this table must match that used in the CPU boot and

reset tables in reset .c.

The BSP declaration of this table are normally found in the top level cores. c file so that
they are shared across all the CPU cores.

The following declarations need to be made in the BSP (normally found in cores. c);

extern unsigned int bsp_cpu_count;
extern struct bsp_cpu_info bsp_cpus|(];

Where bsp_ cpus is the array of CPU definitions and bsp_cpu_count is set to the number
of entries in that array.

J

196/216 8182595 Rev C

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 199/218

Multicom 4 ICS board support package

A.1.2 Mailbox table

This structure defines an individual Mailbox entry. Each mailbox entry defines a set of 4 x
32-bit mailbox registers. For local mailboxes, an interrupt request number (or address on
0S21) should be provided so that interrupts can be accepted on that set of mailboxes. For
non-local mailboxes (that is, mailboxes owned by other CPUs) then this should be set to 0.

Note: Each Mailbox IP on the SoC actually provides two independent sets of 4 x 32-bit mailbox
registers. The second set is at offset 0x100 from the base address of the Mailbox IP.

struct bsp_mbox_regs

{
void *base;
unsigned int interrupt;
unsigned int flags;

Y

Table 28. Mailbox table structure

Structure member name Description
base Physical base address of the mailbox set
Interrupt request number (or address on 0S21)
interrupt associated with this mailbox, if local. Set to 0 for remote
mailboxes
flags Various flag bits

The following declarations need to be made in the BSP (normally found in mbox. c);

extern unsigned int bsp_mailbox_count;
extern struct bsp_mbox_regs bsp_mailboxes|[];

Where bsp_mailboxes is the array of mailbox definitions and bsp_mailbox_count is
set to the number of entries in that array.

A.1.3 Reset and boot addresses

These data structures are used to define, for each CPU, the core reset and boot information
so that ICS can load and start each CPU. The entries in these tables must be synchronized
with entries in the CPU table, described in Section A.1.1 on page 196.

Boot address

/* Boot address info */
struct bsp_boot_address_reg

{
volatile unsigned int *address;
int leftshift;
unsigned int mask;

Y

KYI 8182595 Rev C 197/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 200/218

ICS board support package Multicom 4

Table 29. Boot address structure

Structure member name Description

address For each CPU, SYSCONF boot register address
leftshift Left-shift to be applied to boot address

mask Mask to be applied to boot address

Reset address

struct bsp_reg _mask

{
volatile unsigned int *address;
unsigned int mask;
unsigned int value;

Y

Table 30. Register address structure

Structure member name Description

address Register SYSCONF address

mask Mask to be applied to register

value Data value to be applied to the register

The following declarations need to be made in the BSP (normally found in reset.c);

extern struct bsp_boot_address._ reg bsp_sys_boot_registers[];

extern struct bsp_reg_mask bsp_sys_reset_bypass;
extern unsigned int bsp_sys_reset_bypass_count;
extern struct bsp_reg_mask bsp_sys_boot_enablel[];
extern struct bsp_reg_mask bsp_sys_reset_registers|[];

Where bsp_boot_address_registers is an array of boot address definitions for each
CPU core in the SoC.

The bsp_sys_reset_bypass array defines all the SYSCONF boot reset bypass registers
and bit patterns necessary to allow individual CPUs to be reset. The
bsp_sys_reset_bypass_count variable should be set to the number of entries in this
array.

The bsp_sys._boot_enable table defines for each CPU, the SYSCONF boot enable
registers and bit pattern to cause each CPU to boot.

The bsp_sys_reset_registers table defines for each CPU, the SYSCONF reset
registers and bit patterns to cause each CPU to be reset. By setting an array entry value
member to 0, the reset logic applies mask followed by ~mask to the register.

Normally these BSP declarations are only supplied in the ST40/sh4 BSPs as they are
usually responsible for the reset and loading of the other CPU cores.

Note: These tables and the associated macro header file are normally copied directly from the
ST40 Micro Toolset examples directory.

J

198/216 8182595 Rev C

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595

Multicom 4

REVISION C

CONTROLLED DOCUMENT (Check latest revision)

DATE 28-FEB-2011 page: 201/218

ICS board support package

A1.4

A.2

Note:

A.21

CPU core name

extern const char *

bsp_cpu_name;

This is a CPU core declaration and is usually found in the name . ¢ BSP file for each CPU
core. It should be set to the ASCIl CPU core name of the corresponding CPU and must
match one of the CPU names found in the bsp_cpus|[] table.

Example BSP template
The following example BSP template is for the MB628/STx7141 based platform/SoC.

Only the templates for the estb and audio CPUs are included.

CPU table

/* Filename:

stx7141/cores.c */

struct bsp_cpu_info bsp_cpus[] =

{
{

.name = "estb",/* eSTB */
.type = "st40",
.num= 0 /* MASTER */
.flags= 0,

T,

{
.name = "ecm",/* eCM */
.type = "std0",
.num= 3
.flags= 0,

Y,

{
.name = "audio",/* audio */
.type = "st231",
.num= 2
.flags= 0,

+,

{
.name = "video",/* video */
.type = "st231",
num= 1
flags= 0,

I

Y
unsigned int bsp_cpu_count = sizeof (bsp_cpus)/sizeof (bsp_cpus[0]) ;

8182595 Rev C

199/216

©Copyright STMicroelectronics

N/A

Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 202/218

ICS board support package Multicom 4

A.2.2 Mailbox tables

/* Filename stx7141/st40/estb/mbox.c */

#define MBOXO0_ADDR 0xfe211000
#define MBOX1_ADDR 0xfe212000
#define MBOX2_ADDR 0xfe211800
#define MBOX3_ADDR 0xfe212800

#ifdef _ os21_
#include <o0s21/st40/sti7141.h>

#define VIDEO_MBOX_IRQ((unsigned int) &0S21_INTERRUPT_MBOXO_SH4_IRQ) /* MBOX0 SET2 */
#define ECM_MBOX_IRQ ((unsigned int) &0S21_INTERRUPT_MBOX2_SH4_ IRQ)/* MBOX2 SET2 */
#define AUDIO_MBOX_IRQ((unsigned int) &0S21_INTERRUPT_MBOX1_SH4_IRQ)/* MBOX1 SET2 */
#define ESTB_MBOX_IRQ((unsigned int) &0S21_INTERRUPT MBOX3_LX_DH_IRQ) /* MBOX3 SET1 */

#endif
#ifdef _ KERNEL_
/* Based on a ILC3 base of 65 + offsets in ADCS 8071978 (Table 10) */

#define VIDEO_MBOX_IRQ(65 + 9)/* MBOX0 SET2 */
#define ECM_MBOX_IRQ (65 + 13)/* MBOX2 SET2 */
#define AUDIO_MBOX_IRQ(65 + 11)/* MBOX1 SET2 */
#define ESTB_MBOX_IRQ (65 + 14)/* MBOX3 SET1 */

#endif

struct bsp_mbox_regs bsp_mailboxes[] =

{

.base= (void *) (MBOXO0_ADDR), /* Video LX Mailbox (MBOX0.1) */
.interrupt= 0, /* Video owns SET1 */
.flags =0

.base= (void *) (MBOXO0_ADDR+0x100), /* Video LX Mailbox (MB0OX0.2) */
.interrupt= VIDEO_MBOX_IRQ,/* *WE* own SET2 */
.flags =0

.base= (void *) (MBOX2_ADDR), /* ST40 ECM Mailbox (MBOX2.1) */
.interrupt= 0, /* ECM owns SET1 */
.flags =0

.base= (void *) (MBOX2_ADDR+0x100),/* ST40 ECM Mailbox (MBOX2.2) */
.interrupt= ECM_MBOX_IRQ, /* *WE* own SET2 */
.flags =0

.base= (void *) (MBOX1_ADDR),/* Audio LX Mailbox (MBOX1.1) */
.interrupt = 0,/* Audio owns SET1 */
.flags =0

200/216 8182595 Rev C I‘YI

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011
Multicom 4 ICS board support package
{
.base= (void *) (MBOX1_ADDR+0x100),/* Audio LX Mailbox (MBOX1.2) */
.interrupt = AUDIO_MBOX_ IRQ,/* *WE* own SET2 */
.flags =0
H,
{
.base= (void *) (MBOX3_ADDR),/* ST40 ESTB Mailbox (MBOX3.1) */
.interrupt = ESTB_MBOX_IRQ,/* *WE* own SET1 */
.flags =0
H,
{
.base= (void *) (MBOX3_ADDR+0x100),/* ST40 ESTB Mailbox (MBOX3.2) */
.interrupt = 0,/* ECM owns SET2 */
.flags =0
H,
Y
unsigned int bsp_mailbox_count = sizeof (bsp_mailboxes)/sizeof (bsp_mailboxes[0]);

/* Filename:

stx7141/st231/audio/mbox.c

#include <bsp/_bsp.h>

#define MBOX0_ADDR 0xfe211000
#define MBOX1_ADDR 0xfe212000
#define MBOX2_ADDR 0xfe211800
#define MBOX3_ADDR 0xfe212800

#include <0s21/st200/sti7141.h>

struct bsp_mbox_regs bsp_mailboxes[] =

{

.base= (void *) (MBOXO0_ADDR), /* Video LX Mailbox (MBOX0.1) */
.interrupt= 0,

.flags =0

.base= (void *) (MBOX0_ADDR+0x100), /* Video LX Mailbox (MBOX0.2) */
.interrupt= 0,

.flags =0

.base= (void *) (MBOX2_ADDR), /* ST40 ECM Mailbox (MBOX2.1) */
.interrupt= 0,

.flags =0

.base= (void *) (MBOX2_ADDR+0x100), /* ST40 ECM Mailbox (MBOX2.2) */
.interrupt= 0,

.flags =0

.base= (void *) (MBOX1_ADDR),/* Audio LX Mailbox (MBOX1.1) */
.interrupt = (unsigned int) &0S21_INTERRUPT_MAILBOX, /* *WE* own this one */

.flags =0

8182595 Rev C 201/216

page: 203/218

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 204/218
ICS board support package Multicom 4
{ .base= (void *) (MBOX1_ADDR+0x100),/* Audio LX Mailbox (MBOX1.2) */
.interrupt = 0,
.flags =0
},
{ .base= (void *) (MBOX3_ADDR),/* ST40 ESTB Mailbox (MBOX3.1) */
.interrupt = 0,
.flags =0
.base= (void *) (MBOX3_ADDR+0x100),/* ST40 ESTB Mailbox (MBOX3.1) */
.interrupt = 0,
.flags =0
H,
Y
unsigned int bsp_mailbox_count = sizeof (bsp_mailboxes)/sizeof (bsp_mailboxes[0]);
A.2.3 Reset and boot addresses
/* Filename: stx7141/st40/reset.c /*
#include <bsp/_bsp.h>
#include "sti7l14lreg.h"
/* Reset bypass mask must not unset masked eCM reset as reset will be asserted. */
struct bsp_reg mask bsp_sys_reset_bypass[] = {
{STI7141_SYSCONF_SYS_CFG08, ~(1 << 3), (1 << 4) | (1 << 3)13,
{STI7141_SYSCONF_SYS_CFG09, ~((1 << 28) | (1 << 27)), (1 << 27)}
Y
/* Size of the above array */
unsigned int bsp_sys_reset_bypass_count =
sizeof (bsp_sys_reset_bypass)/sizeof (bsp_sys_reset_bypass[0]);
struct bsp_boot_address_reg bsp_sys_boot_registers[] = {
{STI7141_SYSCONF_SYS_CFG08, 3, OxFFFF0000}, /* eSTB */
{STI7141_SYSCONF_SYS_CFG04, 3, OxFFFF8000}, /* eCM */
{STI7141_SYSCONF_SYS_CFG26, 0, OxFFFFFFO00}, /* audio */
{STI7141_SYSCONF_SYS_CFG28, 0, OxFFFFFF00} /* video */
}i
struct bsp_reg _mask bsp_sys_boot_enable[] = {
{STI7141_SYSCONF_SYS_CFGO08, ~1, 1},/* eSTB */
{STI7141_SYSCONF_SYS_CFG08, ~2, 2},/* eCM */
{STI7141_SYSCONF_SYS_CFG26, ~1, 1},/* audio */
{STI7141_SYSCONF_SYS_CFG28, ~1, 1}/* video */
}i
struct bsp_reg _mask bsp_sys_reset_registers[] = {
{STI7141_SYSCONF_SYS_CFG08, ~(1 << 6), 1 << 6},/* eSTB */
{STI7141_SYSCONF_SYS_CFG08, ~(1 << 7), 1 << 7},/* eCM */
{STI7141_SYSCONF_SYS_CFG27, ~1, 1}, /* audio */
{STI7141_SYSCONF_SYS_CFG29, ~1, 1} /* video */
Y
202/216 8182595 Rev C 1S7]
©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision)

Multicom 4

DATE 28-FEB-2011 page: 205/218

ICS board support package

A2.4

CPU core name

/* Filename: stx7141/st40/estb/name.c /*
#include <bsp/_bsp.h>

const char * bsp_cpu_name = "estb";

Filename: stx7141/st231/audio/name.c
#include <bsp/_bsp.h>

const char * bsp_cpu_name = "audio";

8182595 Rev C

203/216

©Copyright STMicroelectronics

N/A

Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 206/218

MME supplement Multicom 4

Appendix B MME supplement

This appendix provides supplementary information to Chapter 2: Using the MME API.

B.1 Parameter encoding

This section describes a simply interface for a simple MPEG video decoder showing how
the configuration parameters can be customized for each transformer.

B.1.1 Samples definitions

lists the MPEG video decoders specific definitions.

Table 31. MPEG video decoders specific definitions

Type Description

Defines the different picture types an MPEG video

MPGV_PictureType_t ,
- YPe_ transformation can handle.

Parameters to be used for the next transformation

MP 1 1p
GV_GlobalParams_t an MPEG transformer has to process.

Parameters used by an MPEG transformer to

MPGV_D P .
GV_DecodeParams_t decode an MPEG picture.

MPGV_PictureType_t

Definition: typedef enum
{
MPGV_PICTURE_TYPE_T,
MPGV_PICTURE_TYPE_P,
MPGV_PICTURE_TYPE_B,
} MPGV_PictureType_t;

Description: Defines the different picture types an MPEG video transformation can handle.
Fields:
MPGV_PICTURE_TYPE_|I Picture type is I.
MPGV_PICTURE_TYPE_P Picture type is P.
MPGV_PICTURE_TYPE_B Picture type is B.
See also: MPGV_DecodeParams_t
204/216 8182595 Rev C ﬁ

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C

CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

Multicom 4 MME supplement
MPGV_GlobalParams_t
Definition:
enum MPGV_GlobalParamsIdx {
MME_OFFSET_MPGVGlobal_horizontal_size_value,
MME_OFFSET_MPGVGlobal_vertical_size_value,
MME_OFFSET_MPGVGlobal_intra_gquantiser_matrix,
MME_OFFSET_MPGVGlobal_non_intra_guantiser_matrix =
MME_OFFSET_MPGVGlobal_intra_guantiser_matrix + 64,
MME_LENGTH_MPGVGlobal =
MME_OFFSET_MPGVGlobal_non_intra_gquantiser_matrix + 64
#define MME_TYPE_MPGVGlobal_horizontal_size_value U32
#define MME_TYPE_MPGVGlobal_vertial_size_value U32
#define MME_TYPE_MPGVGlobal_intra_quantiser_matrix U8
#define MME_TYPE_MPGVGlobal_non_intra_guantiser_matrix Us
}i
typedef MME_GenericParams_t MPGV_GlobalParams_t [MME_LENGTH (MPGVGlobal)];
Description: Parameters to be used for the next transformation an MPEG transformer has to
process.
The following code provides a simplified example:
MPGV_GlobalParams_t params;
MME_PARAM (params, Length) = MME_LENGTH (MPGVGlobal) ;
MME_PARAM (params, MPGVGlobal_horizontal_size_value) = hsv;
MME_PARAM (params, MPGVGlobal_vertical_size_value) = vsv;
for (i=0; i<64; i++) {
MME_INDEXED_PARAM (params, MPGVGlobal_intra_quantiser matrix, 1) =
igm([i];
/* oL */
}
or to declare parameters statically:
MPGV_GlobalParams_t params = {
10,
10,
i, 2, 3, 4, 5,6, 7,8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
A N,
See also: MME_AllocationFlags_t

MME_SendCommand
MME_PARAM
MME_INDEXED_ PARAM

8182595 Rev C 205/216

page: 207/218

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 208/218

MME supplement Multicom 4

MPGV_DecodeParams _t
Definition:

enum MPGVIdx {
MME_OFFSET_MPGV_picture_type,
MME_OFFSET_MPGV_full_pel_forward_vector,
MME_OFFSET_MPGV_forward_ f_code,
MME_OFFSET_MPGV_full_pel_backward_vector,
MME_OFFSET_MPGV_backward_f_code,
MME_OFFSET_MPGV_forward_horizontal,
MME_OFFSET_MPGV_forward_vertical,

/* oL %/

MME_LENGTH_MPGV

#define MME_TYPE_MPGV_picture_type MPGV_Picture_t
#define MME_TYPE_MPGV_full pel_forward_vector U32

#define MME_TYPE_MPGV_forward_f_code u32

#define MME_TYPE_MPGV_full_pel_backward_vector U32

#define MME_TYPE_MPGV_backward_f_code U32

#define MME_TYPE_MPGV_forward_horizontal u32

#define MME_TYPE_MPGV_forward_vertical U32

/* oL *)

}i

typedef MME_GenericParams_t MPGV_DecodeParams_t [MME_LENGTH (MPGV)] ;

Description: Parameters to be used by a MPEG transformer to be decode an MPEG picture.

Fields:
MPGV_picture_type Type of the picture that has to be decoded
MPGV_full_pel_forward_vector As described in ISO/IEC 13818-2.
MPGV_forward_f_code As described in ISO/IEC 13818-2.
MPGV_full_pel_backward_vector As described in ISO/IEC 13818-2.
MPGV_backward_f_code As described in ISO/IEC 13818-2.
MPGV_forward_horizontal As described in ISO/IEC 13818-2.
MPGV_forward_vertical As described in ISO/IEC 13818-2.

The following code provides an example:

MME_Command_t command;

MME_CommandStatus_t status;
MME_DataBuffer_t buffers([4];
MPGV_DecodeParams_t params;

command.StructSize = sizeof (command) ;

command .CmdEnd = MME_COMMAND_END_RETURN_NOTIFY;
command.DueTime = now + (20 * MS);
command.CmdStatus_p = &status;
command.NumInputBuffers = 3;
command.NumOutputBuffers = 1;

command.Buffers_p = &buffers;

command.Param_p = ¶ms;

status.StructSize = sizeof (status);

206/216 8182595 Rev C I‘YI

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 209/218

Multicom 4 MME supplement

/* Setup the input buffers, compressed data, backward reference picture and
forward reference picture */
/* Setup the output buffer, the decompressed picture */

/* Setup the transformer specific parameter structure */

MME_PARAM (params, MPGV_picture_type) = pt;

MME_PARAM (params, MPGV_full_pel_ forward_vector = 0;

VA

err = MME_SendCommand (handle, MME_TRANSFORM, &command) ;
See also: MPGV_GlobalParams_t

MME_AllocationFlags_t
MME_SendCommand
MME_PARAM

K7[8182595 Rev C 207/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 210/218

Advanced build options Multicom 4

Appendix C Advanced build options

This appendix describes how environment or make command line variables can be used to
tailor the Multicom build process. See Chapter 1: Building Multicom on page 8 for details on
how to build the software.

Note: Many of the options described below alter they way the software is built. For such changes it
is important that the tree is cleaned before building to prevent make’s build avoidance
techniques from interfering with the changes.

C.1 Debugging assertions and logging

All target resident source code is supplied with the Multicom distribution, this allows
application developers to enable the in built assertion checking and/or run-time logging to
help them identify problems.

Note: Debug assertions are runtime tests compiled into the application that, to a limited extent,
verify correct operation of the program. This is supplementary to normal debugging which
requires only debugging information. Compiling with debugging information is discussed in
Chapter 1: Building Multicom on page 8.

All these facilities are controlled at build time by a single environment or make variable
DEBUG_CFLAGS. The contents of this variable are placed on the command line for every
compiler invocation allowing DEBUG_CFLAGS to be used to defined C pre-processor macros
the alter the build.

Table 32. Pre-processor macros that enable diagnostic code

Pre-processor macro Purpose

Enable all debug assertions within the ICS tree. Also causes the
tracing code to be compiled in. When used alone this macro does
not cause any tracing to be output since each module must have
tracing separately enabled.

ICS_DEBUG

ICS_DEBUG_FLAGS=<mask> |Enable individual ICS subsystem library tracing.

Enable extra checking and tracing of all memory allocations from

ICS_DEBUG_MEM=1
CS_DEBUG the ICS subsystem.

Enable all debug assertions within the MME tree. Also causes the
tracing code to be compiled in. When used alone this macro does
not cause any tracing to be output since each module must have
tracing separately enabled.

MME_DEBUG

MME_DEBUG_FLAGS=<mask> Enable individual MME subsystem library tracing,

To build an Multicom tree with the maximum possible amount of diagnostic code the
following command line could be used.

make DEBUG_CFLAGS="-DICS_DEBUG -DICS_DEBUG_MEM=1
-DICS_DEBUG_FLAGS=-1 -DMME_DEBUG -DMME_DEBUG_FLAGS=-1"

DEBUG_CFLAGS does not have to be specified on the make command line; it can also be set
as an environment variable.

208/216 8182595 Rev C I‘YI

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595

REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

Multicom 4 Advanced build options

C.2

When running the host under Linux, debug logging can be enabled in the same way, that is
by compiling the Multicom 4 kernel drivers, having set DEBUG_CFLAGS appropriately. The
debug logging level and output channel can then be controlled by using the kernel module
parameters supplied to both the ICS and MME kernel modules. For example:

insmod ics.ko debug flags=1 debug_ chan=5
insmod mme.ko debug_flags=1

Tuneable parameters

MME allows parameters such as thread priority to be tuned without recompiling Multicom
components. The function to modify tuneable parameters is:

MME_ERROR MME_ModifyTuneable (MME_Tuneable_t key, MME_UINT value)

Each call to this function allows a single tuneable value to be updated. See
MME_ModifyTuneable on page 61 for further details.

8182595 Rev C 209/216

page: 211/218

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 212/218

ICS Linux module parameters Multicom 4

Appendix D ICS Linux module parameters

This appendix describes the installation parameters that can be supplied to the ICS kernel
module.

D.1 Support for declaring ICS regions on the module load

The parameters used for this purpose have the following syntax:

regions = region|,region]
region = <bpaZname>|<phys_base>:<size>

Where <bpa2name> is the ASCII name of the bpa?2 partition, for example, LMI_VID or
LMI_sSYS. Otherwise the physical base address and size of a region can be specified
directly.

When configured these regions are mapped into all CPUs as cached and uncached
translations.

D.2 Support for declaring ICS companion firmware on the
module load
The parameters used for this purpose have the following syntax:

firmware = companion[, companion]
companion = <cpu>:<filename>

Where <cpu> can either be the logical CPU number (integer) or the CPU core name, for
example: audio0 or videoO. <filename> must be an ASCII filename of an ELF file
located in /1ib/firmware.

D.3 Support for contiguous allocations from a named BPA2
memory partition
The parameter used for this purpose have the following syntax:
bpa2_part = “part_name’

The default for this value is “bigphysarea”.

J

210/216 8182595 Rev C

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C

Multicom 4

CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

Revision history

Revision history

Table 33. Document revision history

Date

Revision

Changes

24-Jan-2011

Minor rewordings not listed.

Updated Chapter 1: Building Multicom on page 8 and Section 1.1.2: Compiler
recommendations on page 9 to add STLinux releases and footnote.

Updated Section 1.4: Compiling and linking against the Multicom 4 libraries on
page 10 to remove inappropriate note.

Corrected typo in Section 1.7: Running the tests under OS21 on page 12.
Updated Section 2.5.2: Manually managing data buffers on page 23to correctly
refer to the function MME_RegisterMemory rather than
MME_RegisterBuffer.

Updated Section 2.11.1: OS21 on page 31 to clarify.

Documented the BSP_INCDIR environment variable in Appendix A: ICS board

support package on page 195.

8182595 Rev C 211/216

page: 213/218

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C

Revision history

CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011

Multicom 4

Table 33. Document revision history (continued)

Date

Revision

Changes

29-Jun-2010

Supports the Multicom 4 R4.0.2.
Removed all references to ics_load_entry and ics_load_free.

Added details about Linux userspace to Chapter 1: Building Multicom on
page 8, throughout.

Updated Table 1 on page 8.
Updated Section 1.1.2: Compiler recommendations on page 9.

Updated the Notes in Section 1.4: Compiling and linking against the Multicom 4
libraries on page 10.

Updated Section 1.6: Debugging support on page 11 and added Section 1.6.1:
Debug logging on page 12.

Updated Section 1.8: Running the tests under Linux on page 12.

Updated Section 2.1.1: Transformers and transformer instances on page 14
and added Figure 2.

Moved multi-hosting material to Section 2.1.2: Multi-hosting support on page 15
and added Figure 3.

Added Section 2.8: Fault detection and recovery on page 28.

Added MME_PingTransformer on page 66.

Updated the description of MME_WaitCommand on page 72.

Added MME_COMMAND_TIMEOUT to MME_ERROR on page 88.
Added MME_TRANSFORMER_TIMEOUT to MME_Event_t on page 90.
Updated Table 9 on page 109 and associated text.

Updated Section 5.2.3: ICS initialization and termination on page 110.
Added Note to Section 5.8: CPU watchdog support on page 118.
Updated the description of ics_cpu_init on page 120, adding Table 21.
Updated the definition and error of ics_cpu_self on page 126.
Updated the description of ics_cpu_start on page 127.

Updated the definition and description of ics_load_elf_file on page 141 and
ics_load_elf _image on page 142.

Updated “Context” for ICS_channel_send on page 151.

Updated the description of ICS_cpu_disconnect on page 154.
Updated the description of ICS_cpu_init on page 156.

Updated the description of ICS_msg_send on page 170.

Introduction to Appendix A: ICS board support package on page 195 rewritten
and example updated.

Updated num in Table 27: CPU name table structure on page 196.
Updated Reset address on page 198.

Updated Section A.2.1: CPU table on page 199.

Updated Section A.2.2: Mailbox tables on page 200.

Updated Section A.2.3: Reset and boot addresses on page 202.
Updated Section C.1: Debugging assertions and logging on page 208.
Added Appendix D: ICS Linux module parameters on page 210.

19-Oct-2009

Initial release.

212/216

8182595 Rev C I‘YI

page: 214/218

©Copyright STMicroelectronics

N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595

REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011
Multicom 4 Index
Index
Symbols Dynamic loading 11, 32, 106
_bsp.h o 202
E
B ELF 11, 106
Backus-NaurForm 7 Er;jll\jllgness 43
Bootaddress 197 Examplé """""""""""""""""
BSP configuration 195 MME 46
bsp_boot_address_reg 1 72
bsp_cpu_count, 196, 199
bsp_cpu_info, 196 F
bsp_cpu_name 199, 203
bsg_cgu; 196, 199 FlagsIn 25
- i : ’ FlagsOut 25
BSP_INCDIR environment variable 195 FOURCC formato 35
bsp_ma!lbox_count """""" 197, 201-202 Frame-based transformer 30, 37
bsp_mailboxes 197, 201-202
bsp_mbox_regs L. 197
bsp_reg_mask 198 H
BSP_SRCDIR environment variable 195 Host processor
bsp_sys_boot_enable 198, 202 MME ..\t 14
bsp_sys_boot_registers 198, 202
bsp_sys_reset_bypass 198, 202 I
bsp_sys_reset_bypass_count 198, 202
bsp_sys_reset_register 202 ICS .. 106-119
bsp_sys_reset_registers 198 channel communication 111
Buffer CPU watchdog support 118
MME 22-25 debug logging support 119
Build dynamic module loading 117
SOUrCECOOE . . .ottt i 9 initialization 107
testsuite ... i 10 memory management 115
name serveriiin.. 117
c port communication 113
ICS_channel_alloc 111-112, 143
Cache ICS_CHANNEL_CALLBACK 145
MME i 22,25 ICS_channel_close 111, 146
Companion processor ICS_channel_free 111, 147
MME 14 |CS_Channe|_open ____________ 1 11-112’ 148
Compilation 10 ICS channel recv 111, 149
[0 (== o 196 ICS_channel_release 111, 150
ICS_channel_send 111-112, 151
D ICS_channel_unblock 111, 152
ICS_cpu_connect 118, 153
Data structure ICS_cpu_disconnect 118, 154
MME 43 |CS_CpU_|nfO 110, 155
Debug ICS_CPU_INIt + .o voeeeee e 110, 156
assertions, 208 ICS_CPUINIE « o v e 120
Support 11 iCS_CpU_lOOkUp 1 09, 122
Deferred commands iCS_CPU_MASK ... ooeeeeeen . 109, 123
MME 38 iCS_CpU_name 108, 124
‘ﬁ 8182595 Rev C 213/216

page: 215/218

©Copyright STMicroelectronics

Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595

REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011
Index Multicom 4
ics_cpu_reset L. 109, 125 L
ics_cpu_self ... L. 109, 126 Link 10
ics_cpu_start 109, 127 Lot
ICS_CpU_term oo 110, 157 Linux 9-10, 12, 20, 210
iCs_cpu_type 108
ICS_CPU_LYPE ..ot 128 M
ics_cpu_version 109,129 Mailbox ..o 195, 197
ics_debug chan 19,130 moxc o 197, 200
ICS_debug_dump 19,158 MVE 14-47
ics_debug_flags 11-12, 119, 131 See also Transformer
ICS_dyn_load_file 117,159 Bufferandcache 22
ICS_dyn_load_image 117,161 command state 27
ICS_dyn_unload 117, 163 commands\ " 17, 26-30, 36-42
ics_err_str 109, 133 deferred o 38
ICS_ERRORoconn, 12,114 contextdata 34
ics_heap_alloc 110,134 data representation 43
ics_heap_base 110, 135 duetime ..., 17
ics_heap_create 110, 136 INAlIZAtON . &\ ot e e e e 20
ics_heap_destroy 110, 137 insufficientmemory 40
ics_heap_free 110, 138 NAMESPACE - .« v o e oo 46
ics_heap_pbase 110, 139 parameter passingooveenoin... 42
ics_heap_size 110, 140 underflow 40
!CS_Ioad_elf_Tlle 109, 141 MME_AbortCommand 28, 31, 48
!CS_Ioad_eIf_lmage 109, 142 MME_AbortCommand_t 41-42, 75
ics_load_free 143 MME_AIIocationFIagS_t 76
ICS_msg_cancel 113-114, 164 \ME_AllocDataBuffer 23, 49
ICS_MSG_DESC 165 MME_Command_t 26, 41, 77
ICS_msg post 113-114, 166 MME_CommandCode_t 79
|CS_mSg_reCV 113-1 14, 168 MME_CommandEndType_t 80
ICS_msg_send 113-114, 170 MME_Commandid_t ..o oovoveeeee 81
ICS_msg_teslt 114, 172 MME_CommandState t 82
ICS_msg_wait 114, 173 MME_CommandStatus_t 26, 37, 83
ICS_nsrv_add ... 117,174 \MME_DataBuffer t 22, 85
ICS_nsrv_lookup 17,175 MME_DataFormat_t 86
ICS_nsrv_remove 117,177 MME_DBG FLAG_S ____________________ 87
ICS_por‘t_aIIOC 113'114, 178 MME:Debu_gFlagS 11-12, 50
ICS_PORT_CALLBACK 180 MME_DeregisterMemory 51
ICS_port_cpucooiia... 113, 181 MME_DeregisterTransformer 52
|CS_p0rt_free 113-1 14, 182 MME ERROR, 88
ICS_port_lookup 113-114, 183 MME_ErrorStr 53
ICS_region_add 115, 184 MME_Event o 90
ICS_region_phys2virt 115,186 \MME_FreeDataBuffer 23, 54
ICS_region_remove 115, 187 MME_GenericCallback t 91
ICS_region_virt2phys 115, 188 MME:GenericParamsj ___________ 26, 42, 92
ICS_VERSION 194 MME_GetTranSfOrmerCapablIlty 22, 55
ICS_VERSION_CODE 194 MME_GetTransformerCapability_t . . .35, 42, 93
ICS_WatCthg_add 118, 189 MME INDEXED PARAM 56
ICS_WATCHDOG_CALLBACK 191 MME_Init _ 20, 57
ICS_watchdog_remove 118, 192 MME_InitTransformer 21-22, 58
ICS_watchdog_reprime 118, 193 MME_InitTransformer t 34, 94
MME_LENGTH 59
MME_LENGTH_BYTES 60
214/216 8182595 Rev C ﬁ

page: 216/218

©Copyright STMicroelectronics

N/A

Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 217/218

Multicom 4 Index
MME_MAX_TRANSFORMER_NAME 95 S
MME_MemoryHandle_t 96 Software
MME_ModifyTuneable 61, 209 notation 7
MME_NotifyHost 38-39, 41, 63 Source codé """"""""""""""" 8
MME_PARAM 64 T et
- STMicroConnect 6

MME—PARAM—SUBLIST """"""""" 65 Stream-based transformer 30
MME_PingTransformer 66
MME_Priority t............ 97
MME_ProcessCommand_t 36-37, 42, 98 T
MME_RegisterMemory 23, 67 Transformer
MME_RegisterTransformer 20, 33, 68 See also MME
MME_ScatterPage_t 25, 99 callback 17
MME_SEND_BUFFER 31 commands. See MME
MME_SEND_BUFFERS . .17, 29-30, 37, 40, 42 commands
MME_SendCommand 23, 26, 29, 37, 69 create 21, 34
MME_SET_GLOBAL_TRANSFORM_PARAMS . destroy i 21
17, o 29, 38, 42 evVeNt 17
MME_Termcooiion. 70 frame-based 30, 37
MME_TermTransformer 21, 71 INSTANCE © v v e et 14
MME_TermTransformer_t 35, 100 instantiation 34
MME_Time_to.one. 101 pipelined 39
MME_TRANSFORM 17,29-31, 38, 42 priorities 18
MME_TransformerCapability_t 102 QUETY + e e e 20 35
MME_TransformerHandle_t 103 (OQIStENNg . . - oo oo 20. 33
MME_TransformerlnitParams_t 104 stream-based ' 30
MME—UNIT """""""""""""" 105 termination 35
MME_Version 74 YD « v e e e 30
MME_WaitCommand 72 Tuning parameters 209
module parameters 210
module_init 118
module_term 118
MPGV_DecodeParams_t 206
MPGV_GlobalParams_t 205
MPGV_PictureType_t 204
multi-hosting 15
N
Namespace

MME 46
0)
OS21 ... 9-10, 12
R
Resetaddress 198
reset.c 196, 198, 202
Runningtestsuites 12
IS77 8182595 Rev C 215/216

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

DOCUMENT 8182595 REVISION C CONTROLLED DOCUMENT (Check latest revision) DATE 28-FEB-2011 page: 218/218

Multicom 4

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved
STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

216/216 8182595 Rev C I‘YI

©Copyright STMicroelectronics N/A Unauthorized reproduction and communication strictly prohibited

	Overview
	Figure 1. Multicom 4 overview

	Preface
	Document identification and control
	Terminology
	Conventions used in this guide
	Acknowledgements

	1 Building Multicom
	1.1 Overview
	1.1.1 Code organization
	Table 1. The distribution directories

	1.1.2 Compiler recommendations

	1.2 Building the library code
	1.3 Building the test code
	1.4 Compiling and linking against the Multicom 4 libraries
	1.5 Building dynamic modules for use with Multicom 4
	1.6 Debugging support
	1.6.1 Debug logging

	1.7 Running the tests under OS21
	1.8 Running the tests under Linux
	1.9 BSP configuration

	2 Using the MME API
	2.1 Overview
	2.1.1 Transformers and transformer instances
	Figure 2. Transformer instances - single host

	2.1.2 Multi-hosting support
	Figure 3. Transformer instances: multi-hosting

	2.1.3 Commands and events
	2.1.4 Callbacks
	2.1.5 Due time
	Figure 4. Time arithmetic

	2.1.6 Transformer priorities
	2.1.7 Structure size

	2.2 Summary of MME facilities
	2.3 Initialization
	2.3.1 Initializing MME
	2.3.2 Registering transformers
	2.3.3 Example

	2.4 Managing transformer lifetimes
	2.4.1 Querying the capabilities of a transformer

	2.5 Buffer and cache management
	Figure 5. A scattered data buffer
	2.5.1 Allocating data buffers
	2.5.2 Manually managing data buffers
	2.5.3 Subdividing a data buffer
	2.5.4 Data buffers in Linux user mode
	2.5.5 Cache management
	Table 2. MME_ScatterPage_t FlagsIn and FlagsOut

	2.6 Application and transformer specific data
	2.7 Issuing commands
	Figure 6. Command state diagram
	2.7.1 Aborting commands

	2.8 Fault detection and recovery
	2.9 Types of commands
	2.9.1 Transforming data
	2.9.2 Providing supplementary buffers
	2.9.3 Altering global parameters

	2.10 Common types of transformer
	2.10.1 Frame-based operation
	2.10.2 Stream-based and hybrid operation

	2.11 Linking and loading
	2.11.1 OS21
	2.11.2 Linux
	2.11.3 Dynamic module linking

	3 Writing an MME transformer
	3.1 Overview
	Table 3. Transformer function pointers

	3.2 Managing transformer lifetimes
	3.2.1 Instantiation
	3.2.2 Context data
	3.2.3 Termination

	3.3 Querying the capabilities of a transformer
	3.4 Processing a command
	3.4.1 Communicating with the application
	3.4.2 Deferred commands
	3.4.3 Streaming and hybrid transformers

	3.5 Aborting commands
	3.6 Scheduling and re-entrancy
	3.7 Parameter passing
	3.7.1 Data representation
	Table 4. Data representation - endianness

	3.7.2 Mapping application data structures into MME parameters
	3.7.3 Namespace management
	Table 5. Recommended postfixes for parameter array names

	3.7.4 An example

	4 MME API
	4.1 Function definitions
	MME_AbortCommand
	MME_AllocDataBuffer
	MME_DebugFlags
	MME_DeregisterMemory
	MME_DeregisterTransformer
	MME_ErrorStr
	MME_FreeDataBuffer
	MME_GetTransformerCapability
	MME_INDEXED_PARAM
	MME_Init
	MME_InitTransformer
	MME_LENGTH
	MME_LENGTH_BYTES
	MME_ModifyTuneable
	Table 6. Tuneable values for MME parameters
	MME_NotifyHost
	MME_PARAM
	MME_PARAM_SUBLIST
	MME_PingTransformer
	MME_RegisterMemory
	MME_RegisterTransformer
	MME_SendCommand
	MME_Term
	MME_TermTransformer
	MME_WaitCommand
	MME_Version

	4.2 MME constants, enums and types
	MME_AbortCommand_t
	MME_AllocationFlags_t
	MME_Command_t
	MME_CommandCode_t
	MME_CommandEndType_t
	MME_CommandId_t
	MME_CommandState_t
	MME_CommandStatus_t
	MME_DataBuffer_t
	MME_DataFormat_t
	MME_DBG_FLAGS
	MME_ERROR
	MME_Event_t
	MME_GenericCallback_t
	MME_GenericParams_t
	MME_GetTransformerCapability_t
	MME_InitTransformer_t
	MME_MAX_TRANSFORMER_NAME
	MME_MemoryHandle_t
	MME_Priority_t
	MME_ProcessCommand_t
	MME_ScatterPage_t
	MME_TermTransformer_t
	MME_Time_t
	MME_TransformerCapability_t
	MME_TransformerHandle_t
	MME_TransformerInitParams_t
	MME_UINT

	5 Overview of the inter-core system (ICS)
	Figure 7. Multicom 4 - ICS context
	5.1 Summary of ICS facilities
	5.2 ICS initialization and system loading
	5.2.1 ICS configuration and setup
	5.2.2 CPU loading and initialization
	Table 8. CPU query functions
	Table 9. Program loading functions
	Table 10. CPU control functions
	Table 11. Information functions
	Table 12. Heap functions

	5.2.3 ICS initialization and termination
	Table 13. Initialization and termination functions

	5.3 Channel-based communication
	Figure 8. ICS channels
	Table 14. Channel functions in ICS

	5.4 Port-based communication
	Figure 9. ICS port model
	Table 15. Port and message functions in ICS

	5.5 Memory region management
	Table 16. Memory region mapping functions
	Figure 10. Multicom memory regions

	5.6 Name server
	Table 17. Name server functions

	5.7 Dynamic module loading
	Table 18. Dynamic code loading functions

	5.8 CPU watchdog support
	Table 19. Failure management functions

	5.9 Debug logging support
	Table 20.

	6 Inter-core system (ICS) API
	6.1 ics_ function definitions
	ics_cpu_init
	ics_cpu_lookup
	ics_cpu_mask
	ics_cpu_name
	ics_cpu_reset
	ics_cpu_self
	ics_cpu_start
	ics_cpu_type
	ics_cpu_version
	ics_debug_chan
	ics_debug_flags
	ics_err_str
	ics_heap_alloc
	ics_heap_base
	ics_heap_create
	ics_heap_destroy
	ics_heap_free
	ics_heap_pbase
	ics_heap_size
	ics_load_elf_file
	ics_load_elf_image

	6.2 ICS_ function definitions
	ICS_channel_alloc
	ICS_CHANNEL_CALLBACK
	ICS_channel_close
	ICS_channel_free
	ICS_channel_open
	ICS_channel_recv
	ICS_channel_release
	ICS_channel_send
	ICS_channel_unblock
	ICS_cpu_connect
	ICS_cpu_disconnect
	ICS_cpu_info
	ICS_cpu_init
	ICS_cpu_term
	ICS_debug_dump
	ICS_dyn_load_file
	ICS_dyn_load_image
	ICS_dyn_unload
	ICS_msg_cancel
	ICS_MSG_DESC
	ICS_msg_post
	ICS_msg_recv
	ICS_msg_send
	ICS_msg_test
	ICS_msg_wait
	ICS_nsrv_add
	ICS_nsrv_lookup
	ICS_nsrv_remove
	ICS_port_alloc
	ICS_PORT_CALLBACK
	ICS_port_cpu
	ICS_port_free
	ICS_port_lookup
	ICS_region_add
	ICS_region_phys2virt
	ICS_region_remove
	ICS_region_virt2phys
	ICS_watchdog_add
	ICS_WATCHDOG_CALLBACK
	ICS_watchdog_remove
	ICS_watchdog_reprime

	6.3 Macro definitions

	Appendix A ICS board support package
	A.1 BSP data structures
	A.1.1 CPU table
	Table 27. CPU name table structure

	A.1.2 Mailbox table
	Table 28. Mailbox table structure

	A.1.3 Reset and boot addresses
	Table 29. Boot address structure
	Table 30. Register address structure

	A.1.4 CPU core name

	A.2 Example BSP template
	A.2.1 CPU table
	A.2.2 Mailbox tables
	A.2.3 Reset and boot addresses
	A.2.4 CPU core name

	Appendix B MME supplement
	B.1 Parameter encoding
	B.1.1 Samples definitions
	Table 31. MPEG video decoders specific definitions

	Appendix C Advanced build options
	C.1 Debugging assertions and logging
	Table 32. Pre-processor macros that enable diagnostic code

	C.2 Tuneable parameters

	Appendix D ICS Linux module parameters
	D.1 Support for declaring ICS regions on the module load
	D.2 Support for declaring ICS companion firmware on the module load
	D.3 Support for contiguous allocations from a named BPA2 memory partition

	Revision history
	Table 33. Document revision history

	Index

