
October 2009 8225460 A 1/7

Multicom 4

Multicom 4 porting guide

1 Introduction

Multicom 4 has been designed to be source compatible with the Multicom 3 multimedia
engine (MME) API. As such, few application or codec code changes should be required to
migrate to Multicom 4.

This document provides some tips and guidance on how to port applications and codec
code to Multicom 4.

Related documents

Multicom 4 user manual (ADCS 8182595)

www.st.com

http://www.st.com

Contents Multicom 4

2/7 8225460 A

Contents

1 Introduction . 1

2 Porting to Multicom 4 . 3

2.1 ICS configuration . 3

2.2 MME buffer and memory management . 3

2.3 MME buffer pool . 4

2.4 MME memory registration . 4

2.5 MME_Run() . 4

2.6 MME_WaitCommand() . 5

3 Revision history . 6

Multicom 4 Porting to Multicom 4

8225460 A 3/7

2 Porting to Multicom 4

The following sections consider different aspects of the Multicom 3 implementation and
describes how they are treated by Multicom 4.

2.1 ICS configuration
Multicom 4 is now based on a new communications system named the Inter-core system
(ICS). All extended mailbox communication library (EMBX) configuration that was used by
Multicom 3 is now deprecated.

In particular SoC Mailbox as well as CPU address ranges and participant maps are now
configured by a peer platform board support package (BSP) library.

Thus calls to:

EMBX_Mailbox_Init
EMBX_Mailbox_Register
EMBX_RegisterTransport
EMBX_Init

can be replaced by a single call to:

ICS_cpu_init(0)

ICS_cpu_init() synchronizes with all CPUs specified in the ICS BSP and hence all
CPUs must be up and running when this function is called. If one or more CPUs fail to call
this function within a certain period, then the function timeouts and returns an error. If users
wish to test with only a subset of the SoC CPUs, then they should use the
ics_cpu_init() API which allows a bitmask of present CPUs to be specified.

2.2 MME buffer and memory management
Multicom 4 is designed to operate using shared memory SoC communications only, and no
data copies are performed during communication, resulting in an efficient implementation.
To achieve this, all data buffers are transferred using a 'zero-copy' technique where only the
physical addresses of the data are transferred between the CPUs.

At the API level, MME deals only with virtual addresses and hence all virtual addresses
need to be translated to and from physical ones on each CPU. Previously this was achieved
under Multicom 3 by specifying what were known as Warp ranges in the EMBX transport
configuration.

Multicom 4 replaces the concept of Warp ranges with individual memory region
registrations, initiated from the host device driver. This provides a more dynamic and fine
grain manipulation of the memory mappings, hence providing better data integrity and error
protection across the SoC.

Porting to Multicom 4 Multicom 4

4/7 8225460 A

2.3 MME buffer pool
MME still supports the MME data buffer allocation APIs, however, the size of the buffer pool
from which these buffers are allocated is no longer configured using the EMBX shared
memory (EMBXSHM) transport configuration. Instead the buffer pool is created during MME
initialization. Unlike Multicom 3 there is a unique buffer pool for each CPU (rather than a
single, globally shared one).

By default the buffer pool size is set to a small value (enough to accommodate MME
message meta-data). If you wish to allocate large data buffers from the MME data buffer
pool then modify the MME_TUNEABLE_BUFFER_POOL_SIZE tuneable by calling;

MME_ModifyTuneable(MME_TUNEABLE_BUFFER_POOL_SIZE, size);

In order for this to have any affect it must be called before MME_Init().

2.4 MME memory registration
All buffers allocated from the MME data buffer pool are guaranteed to be accessible by all
CPUs. Both cached and uncached translations of this memory are allowed.

If your wish to send commands using data buffers not drawn from the MME data buffer pool,
then they must first be registered with MME.

To do this call the following function with either a cached or uncached translation of the
memory buffer to be registered:

MME_RegisterMemory(transformer, buf, size,&handle)

This causes the memory region to be registered in the CPU associated with the referenced
transformer. Failure to do so causes any MME_SendCommand() operations that reference
that memory region to fail.

Memory registration is an expensive operation and hence this should be done during
transformer initialization and not during the time critical runtime.

Once the transformer has been terminated, you should remove the memory region
registration by calling:

MME_DeregisterMemory(handle)

2.5 MME_Run()
In Multicom 3 it was mandatory for the companion applications to call the MME_Run() call
after MME was initialized. In Multicom 4 this is no longer necessary, but the MME_Run()
API is still provided for backwards compatibility. Calling MME_Run() on Multicom 4 will
simply cause the calling task to block until MME is terminated on that CPU.

Multicom 4 Porting to Multicom 4

8225460 A 5/7

2.6 MME_WaitCommand()
Multicom 4 introduces a new method for waiting for command completion. Previously all
command completion was indicated by using a transformer callback. Multicom 4 has
extended this to also allow the user to block waiting for an individual command to complete.
This can be beneficial in cases where there are multiple threads in operation and it can also
reduce the number of OS thread schedules required for each command issue.

The API for waiting for a command completion is;

MME_WaitCommand(handle, cmdId, eventp, timeout)

In order for MME_WaitCommand() to function, the MME command must have been issued
with a CmdEnd code of MME_COMMAND_END_RETURN_WAKE. See the Multicom 4 user
manual (ADCS 8182595) for more details.

Revision history Multicom 4

6/7 8225460 A

3 Revision history

Table 1. Document revision history

Date Revision Changes

19-Oct-2009 A Initial release.

D
R

A
F

T

Multicom 4

8225460 A 7/7

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 Introduction
	2 Porting to Multicom 4
	2.1 ICS configuration
	2.2 MME buffer and memory management
	2.3 MME buffer pool
	2.4 MME memory registration
	2.5 MME_Run()
	2.6 MME_WaitCommand()

	3 Revision history
	Table 1. Document revision history

